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Abstract—Federated learning is a distributed learning method 
that trains a deep network on user devices without collecting data 
from central server. It is useful when the central server can’t collect 
data. However, the absence of data on central server means that deep 
network compression using data is not possible. Deep network 
compression is very important because it enables inference even on 
device with low capacity. In this paper, we proposed a new 
quantization method that significantly reduces FPROPS(floating-
point operations per second) in deep networks without leaking user 
data in federated learning. Quantization parameters are trained by 
general learning loss, and updated simultaneously with weight. We 
call this method as OQFL(Optimized Quantization in Federated 
Learning). OQFL is a method of learning deep networks and 
quantization while maintaining security in a distributed network 
environment including edge computing. We introduce the OQFL 
method and simulate it in various Convolutional deep neural 
networks. We shows that OQFL is possible in most representative 
convolutional deep neural network. Surprisingly, OQFL(4bits) can 
preserve the accuracy of conventional federated learning(32bits) in 
test dataset.
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I. INTRODUCTION 
Recently, the computing paradigm has shifted from 

centralization to distributed environment. In addition, a 
variety of mobile devices are emerging to meet user needs, 
and user-tailored services are becoming more important with 
the development of AI. Therefore, personal privacy is 
becoming very important. Federated learning is a distributed 
learning method that can preserve the user’s data privacy. It 
became possible as the computing power of local devices 
increased. The local device is end device on the network. It 
can be internet of things, gateway, edge and user device. All 
data is stored in the local devices, not the central server, and 
the deep network is trained on the device. Therefore, unlike 
the general deep learning process, federated learning can 

 
 

preserve the user privacy completely because data is not 
leaked out of the user device during the learning process[1].  

Deep network can be trained not only the data collected by 
the central server, but also the security critical data, so it can 
utilize all data. In deep learning, the amount and quality of 
training data is important. Federated learning, which can use 
data in local devices as well as central server data, has 
enormous potential in deep learning. Many studies have been 
conducted on resource allocation and communication 
efficiency, but studies related to deep network compression in 
federated learning process are weak. 

Deep network compression is a necessary technology for 
‘On device AI’, which is in the spotlight. It can make deep 
network faster inference with low capacity of user device. 
Particularly, among the compression field, quantization 
technology make the weight and activation of deep network in 
2bits ~ 16 bits integer from 32bits float, thereby reducing 
FPROPS to make inference of deep networks faster. [2] 
quantized the weight of the existing 32 bits network into 2bits 
at the expense of accuracy loss. However, if only the weights 
are quantized, the FPROPS can’t be significantly reduced. [3] 
significantly reduced FPROPS by quantization not only 
weights but also activations. By doing that, we can obtain 
quantized weights and activations, and by multiplying, faster 
inference is possible. Unlike the above method of quantization 
by analyzing the data distribution of weight and activation, [5] 
and [6] quantized the network by using back propagation 
algorithm as training new parameters. The new parameters 
updated by SGD([5],[6]). We thought this idea could be 
applied to federated learning. 

In this paper, we propose a new learning method, OQFL 
which simultaneously performs network learning and 
quantization parameters learning using SGD(stochastic 
gradient descent) in a general federated learning process. 
Since all data is in user devices , the central server can’t access 
the data. Therefore, user privacy can be completely preserved, 

 



and deep network and quantization parameters can be learned 
simultaneously by OQFL. 

There are two main contributions in this paper.  

1. We demonstrate a simple way to quantize deep 
network in general federated learning. The 
parameters for quantization are updated by SGD, 
and it performs simultaneously with deep network 
update in federated learning process. 

2. We prove that OQFL can be applied various 
convolutional deep networks through experiment 
and, the 4bits deep network by OQFL can preserve 
accuracy of the 32bits deep network by 
conventional federated learning. 

 

II. RELATED WORK 

A. Federated Learning 
There are several procedure in federated learning. Firstly, 

central server  create a deep network and sends the deep 
network to user devices. Secondly, the deep network is trained 
in user device by the data in user device. Thirdly, the deep 
networks is sent to central server from all user devices. Lastly, 
all deep networks which trained in user devices is aggregated 
by central server, and the aggregated deep network is sent to 
user devices again. The aggregation formula is presented in 
the following equation[1]. 

  (1) 

In ,  is the number of data of the th user,  is the 
total number of data.  is the weight that trained by th 
user device.  is the aggregated weight. [1] named above 
procedure as FedAvg. The reason the FedAvg algorithm is 
possible is that the deep network trained by back propagation 
algorithm by SGD [1]. Weight is updated to 

 by SGD and it can be expressed as 
(FedSGD[1]) in distributed environment.  is 

the gradient of the deep network updated on the th local 
device. In the deep network trained by SGD, it means that 
the FedSGD aggregating the mean of the gradients and the 
FedAvg aggregating the mean of the weights are the same in 
distributed learning.  

Unlike regular learning, federated learning does not 
require centralized data collection. Since all data is not leaked 
within user devices, user privacy can be completely preserved.  

  

B. Quantiztion 
Deep network quantization is a way to reduce FLOPS for 

faster inference. [2] quantized the weight of the deep network 
into 2 bits at the loss of accuracy in the following way. They 
used two methods: deterministic and stochastic. Deterministic 
method is as follows: 

 (2) 

And stochastic is 
 In addition, [3] reduced 

the FPROPS by quantization the weight of the deep network 
as well as activation into 2 bits, enabling faster than [2]. [4] 

quantized not only weight and activation but also gradient. 
Above papers don’t use quantization parameters and trained 
deep networks by loss of quantized deep network.  

Unlike the existing general method of minimizing the 

difference between the trained network and the quantized 
network, that is minimizing the quantization error, [5] used the 
loss in general network learning process by back propagation 
algorithm to learn quantization parameters. Quantization 
parameters consist of .  means center of 
quantization interval,  means distance from the center(  is 
for weight,  is for activation and  is for the th layer). 
Weights and activations are clipped or pruned if the value is 
outside the quantization interval range. Surprisingly their 
method in 4 or 5bits cases preserve the accuracy of the full-
precision network. Also, the parameters are trained with 
weights of deep network by general task loss. [6] also, used 
learnable quantization parameters. Weights and activations 
are quantized by equation [6]

  (3) 

In equation is weight or activation, and when 
quantize a deep network with bits, 

 for weight and  for activation.  is 
 if  is less than ,  if it is greater than  and 
 if it is between.  is a rounding operation.  is the 

quantization parameter, and it is learnable by the 
gradient(straight through estimator[7], [8]) of equation (4)[6]. 

  (4) 

 

They also used gradient sale, and the performance of [6] is 
better than [5]. Of course, [6] and [4] quantized both weight 
and activation, and minimized the loss of accuracy of the 
quantized network using back propagation algorithm by SGD. 
We thought that the method of [6] could be applied to 
federated learning because quantization parameters can be 
learned by SGD. 

III. METHOD 
In this paper, the quantization method of [6] is used. In 

forward pass, (weight or activation) is quantized to  by the 
quantization parameter . The output is calculated from the 
quantized deep network and input data, and the loss is 
obtained. When forward pass, activation  and weight  
are integers, so the quantization effect is maximized in the 

Fig. 1. Three layers neural network with quantization 
parameters 



process of . In backward pass, gradient is obtained by 
loss (SGD) and back propagation algorithm is executed. Not 
only the gradient of activations and weights, but also the 
gradient of quantization parameters is obtained. Fig 1 is a 
simplified representation of a quantized three layers neural 
network by . The blue neurons are general 32bits neural 
network and the black neurons are quantized networks. After 
learning, only black neurons remain. The learnable parameters 
in Fig 1 are weights  and quantization parameters . The 
first and last layers are not quantized. Quantization parameters 
are  for weights and  for activations. In Fig 1,  and  
are updated as follows by chain rule.  

 

 

 

 

 

(5) 

 

The quantization parameters can be updated 
 like the weight update , and the 

FedSGD algorithm of [1] can be applied in the form of 
. Like the weight in [1], it can be 

expressed as follows. 

   (6) 

In equation (6)  is the total number of data,  is the 
number of data the th client has.  is the quantization 
parameter updated by th client.  is the aggregated 
quantization parameter. The Since  for quantization of deep 
network is updated by back propagation algorithm by SGD, 
weights and quantization parameters are simultaneously 
updated by using loss in OQFL process. The entire process is 
represented in Fig 2. First, the central server creates a deep 
network and sends it to the learning participants. Second, 
participants train weight and quantization parameter of the 
deep network with minibatch using their own data. Third, The 
deep networks trained on the device are sent to the central 

server. Finally, weights and quantization parameters from 
devices are aggregated on the server.  

Algorithm 1 shows aggregating weights and quantization 
parameters on the central server.  is the number of clients 
participating in learning, and  clients are randomly selected 
by the fraction of participation  for each epoch. Weight and 
quantization parameters of deep networks updated from 
clients aggregated simultaneously by .  
means all elements, including weight, bias, and quantization 
parameter. 

Algorithm 1. Server : Weights and Quantization parameters 
Aggregation.  

Server: 

 Initialize : epochs 

         number of clients 

  fraction of participation 

 for  in range( ): 

   

  random set of  clients 

  for  in : 

   Client( ) 

   

 

Algorithm 2 shows weights and quantization parameters 
update at client. We can use mini-batch by . The client trains 
the deep network received from the central server with its data 

 times.  is the number of layers of the deep network, and 
 is the activation function of relu, sigmoid, etc. The deep 

network quantized in forward pass, and we can get the loss by 
forward pass. The deep network, including quantization 
parameters is trained in  part by the 
loss from forward pass. Of course, quantization parameters, 
weights and bias are trained at the same time. After algorithm 
2, client send the information including weights, bias and 
quantization parameters to server. Then, the server execute 
algorithm 1 again. 

Fig. 2. OQFL process (the smart phone is the end of network, and it can be internet of things device, gateway,  
base station, UAV, edge and the cloud means central server and solid line is uplink and dotted line is downlink) 

 



 

Algorithm 2. Client : Weights and Quantization parameters 
update. 

Client( ): 

 Initialize : batches 

        : local epochs 

        : number of layers 

        : activation function(e.g. relu, sigmoid) 

  

  

  

  

 for  in range : 

        

  

        

  

  

  

  

  

for  in range( ): 

 for  in : 

   

   

   

return  

  

IV. RESULT 
In this paper, we used cifar10 dataset and experimented in 

iid environment. It is assumed that all data is stored on the user 
devices, not central server. We simulated on pytorch and used 
cross entropy function as loss, and momentum is 0.9. The total 
number of clients are 100, (fraction of participation) is 0.1, 

(local epochs) is 5, batch size is 100, local learning rate is 
0.01(learning rate of VGG16 is 0.001). 

We used ResNet[9], PreactResNet[10], MovileNetv2[11], 
VGG[12] for deep convolutional neural networks. We 
quantized all networks to 4bits from 32bits full precision in 
OQFL process. In Fig 3. All convolutional deep neural 
networks are trained with similar slopes in OQFL and 
conventional federated learning(FL). You can see that OQFL 
works well and it can be applied well to various convolutional 
deep neural networks. However, if you look closely at the 
graph, you can see the serrated shape in the graph of OQFL, 
unlike FL. OQFL is more unstable than FL due to quantization, 
but instability doesn’t affect training results. We can get 4bits 
network after OQFL. The 4bits network has much faster 
inference comparing to 32bits full-precision network. 
Therefore, the quantized networks by OQFL will run more 
smoothly on local devices with low computing power. In 
addition, we can preserve user privacy while learning network. 

Surprisingly, the 4bits networks by OQFL preserves the 
accuracy of the 32bits full-precision network by FL. FL has 
slightly better performance than OQFL in train dataset. 
However, OQFL has better performance in most networks in 
test dataset. In Table 1, all four networks(ResNet[9], 
PreActResNet[10], MovileNetv2[11], VGG[12]) have same 
result that the accuracy of OQFL can preserve the accuracy of 
conventional federated learning. We found that the difference 
between the performance in test dataset and the performance 
in train dataset is lower in OQFL than FL. This means that 
overfitting in FL occurs more severely than OQFL. 

We found that OQFL doesn’t work when the total number 
of users are 50 and  is 0.1 in ResNet18[9] case. We guessed 
the reason. There are 50000 training images in cifar10. In the 
same environment above experiment, the first case is that each 
user has 100 images, when the total number of users that 
participate in  OQFL is 50. the second case is that each user 
has 200 images when the total number of users is 100. The 
deep network is trained all of the data on user device 5times. 
The deep network is trained more images in the first case.  

Figure 3. Accuracy and Loss in OQFL for convolutional deep neural networks 
 



Therefore, in second case, the difference between the received 
deep network from central server and the deep network after 
training in user device is more than first case. In other words, 
all deep networks trained on all user devices are very different 
in second case then, error occur during the aggregation by 
central server. We found that the quantization parameter is 
very sensitive in aggregation of OQFL. We will experiment 
with different learning rates for weight and quantization 
parameter, and find the optimal learning rates.  

 

V. CONCLUSION AND FUTURE WORK 
We proposed a new method to quantize deep network in 

federated learning process. There is no way to quantize using 
data in general federated learning. However, the proposed 
method can quantize it from 32bits to 2, 3, 4bits. The 
quantization parameters are easily applicable to federated 
learning, because they are trained by SGD. We can get a 
quantized deep network with much faster inference after 
federated learning. We can simultaneously update deep 
network and quantization parameters, and we can get a 
quantized deep network with much faster inference after 
OQFL. Surprisingly, the deep network after OQFL preserve 
the accuracy of the deep network after federated learning. In 
particular, OQFL has better performance than conventional 
federated learning in the most networks in test dataset.  

In next study, We are going to experiment OQFL in non-
iid environment and compare with iid. In addition, we will 
quantize it to 2, 3bits and measure how much it preserves the 
accuracy of full-precision networks. OQFL has something to 
supplement. There are additional parameters  for 
quantization deep network, that means in OQFL, the edge 
needs more computing power comparing to conventional 
federated learning. Also, as more information is transmitted, 
it can cause a communication bottleneck. To solve this 
problem, we are going to quantize the information from 
devices to central server in OQFL process for communication 
efficiency. 
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  Test Dataset Train Dataset 

Network Method Best Loss Best Accuracy Best Loss Best Accuracy 

ResNet18 
FL(32bits) 0.328594 91.73 0.039707 98.742 

OQFL(4bits) 0.321792 91.6 0.054859 98.126 

PreActResNet18 
FL(32bits) 0.347764 91.51 0.049984 98.292 

OQFL(4bits) 0.319505 92.04 0.05699 98.064 

MovileNetv2 
FL(32bits) 0.425524 87.86 0.165942 94.306 

OQFL(4bits) 0.407621 88.49 0.215707 92.652 

VGG16 
FL(32bits) 0.568557 84.11 0.138565 95.184 

OQFL(4bits) 0.469108 86.96 0.300512 90.216 

Table 1.Conventional Federated Learning vs OQFL for various convolutional deep neural networks


