

Optimized Quantization for Convolutional Deep
Neural Networks in Federated Learning

You Jun Kim, Choong Seon Hong
Department of Computer Science and Engineering

Kyung Hee University, 17104
Republic of Korea

{yj4889, cshong}@khu.ac.kr

Abstract—Federated learning is a distributed learning method
that trains a deep network on user devices without collecting data
from central server. It is useful when the central server can’t collect
data. However, the absence of data on central server means that deep
network compression using data is not possible. Deep network
compression is very important because it enables inference even on
device with low capacity. In this paper, we proposed a new
quantization method that significantly reduces FPROPS(floating-
point operations per second) in deep networks without leaking user
data in federated learning. Quantization parameters are trained by
general learning loss, and updated simultaneously with weight. We
call this method as OQFL(Optimized Quantization in Federated
Learning). OQFL is a method of learning deep networks and
quantization while maintaining security in a distributed network
environment including edge computing. We introduce the OQFL
method and simulate it in various Convolutional deep neural
networks. We shows that OQFL is possible in most representative
convolutional deep neural network. Surprisingly, OQFL(4bits) can
preserve the accuracy of conventional federated learning(32bits) in
test dataset.

Keywords—federated learning, OQFL, FPROPS, quantization

I. INTRODUCTION
Recently, the computing paradigm has shifted from

centralization to distributed environment. In addition, a
variety of mobile devices are emerging to meet user needs,
and user-tailored services are becoming more important with
the development of AI. Therefore, personal privacy is
becoming very important. Federated learning is a distributed
learning method that can preserve the user’s data privacy. It
became possible as the computing power of local devices
increased. The local device is end device on the network. It
can be internet of things, gateway, edge and user device. All
data is stored in the local devices, not the central server, and
the deep network is trained on the device. Therefore, unlike
the general deep learning process, federated learning can

preserve the user privacy completely because data is not
leaked out of the user device during the learning process[1].

Deep network can be trained not only the data collected by
the central server, but also the security critical data, so it can
utilize all data. In deep learning, the amount and quality of
training data is important. Federated learning, which can use
data in local devices as well as central server data, has
enormous potential in deep learning. Many studies have been
conducted on resource allocation and communication
efficiency, but studies related to deep network compression in
federated learning process are weak.

Deep network compression is a necessary technology for
‘On device AI’, which is in the spotlight. It can make deep
network faster inference with low capacity of user device.
Particularly, among the compression field, quantization
technology make the weight and activation of deep network in
2bits ~ 16 bits integer from 32bits float, thereby reducing
FPROPS to make inference of deep networks faster. [2]
quantized the weight of the existing 32 bits network into 2bits
at the expense of accuracy loss. However, if only the weights
are quantized, the FPROPS can’t be significantly reduced. [3]
significantly reduced FPROPS by quantization not only
weights but also activations. By doing that, we can obtain
quantized weights and activations, and by multiplying, faster
inference is possible. Unlike the above method of quantization
by analyzing the data distribution of weight and activation, [5]
and [6] quantized the network by using back propagation
algorithm as training new parameters. The new parameters
updated by SGD([5],[6]). We thought this idea could be
applied to federated learning.

In this paper, we propose a new learning method, OQFL
which simultaneously performs network learning and
quantization parameters learning using SGD(stochastic
gradient descent) in a general federated learning process.
Since all data is in user devices , the central server can’t access
the data. Therefore, user privacy can be completely preserved,

and deep network and quantization parameters can be learned
simultaneously by OQFL.

There are two main contributions in this paper.

1. We demonstrate a simple way to quantize deep
network in general federated learning. The
parameters for quantization are updated by SGD,
and it performs simultaneously with deep network
update in federated learning process.

2. We prove that OQFL can be applied various
convolutional deep networks through experiment
and, the 4bits deep network by OQFL can preserve
accuracy of the 32bits deep network by
conventional federated learning.

II. RELATED WORK

A. Federated Learning
There are several procedure in federated learning. Firstly,

central server create a deep network and sends the deep
network to user devices. Secondly, the deep network is trained
in user device by the data in user device. Thirdly, the deep
networks is sent to central server from all user devices. Lastly,
all deep networks which trained in user devices is aggregated
by central server, and the aggregated deep network is sent to
user devices again. The aggregation formula is presented in
the following equation[1].

 (1)

In , is the number of data of the th user, is the
total number of data. is the weight that trained by th
user device. is the aggregated weight. [1] named above
procedure as FedAvg. The reason the FedAvg algorithm is
possible is that the deep network trained by back propagation
algorithm by SGD [1]. Weight is updated to

 by SGD and it can be expressed as
(FedSGD[1]) in distributed environment. is

the gradient of the deep network updated on the th local
device. In the deep network trained by SGD, it means that
the FedSGD aggregating the mean of the gradients and the
FedAvg aggregating the mean of the weights are the same in
distributed learning.

Unlike regular learning, federated learning does not
require centralized data collection. Since all data is not leaked
within user devices, user privacy can be completely preserved.

B. Quantiztion
Deep network quantization is a way to reduce FLOPS for

faster inference. [2] quantized the weight of the deep network
into 2 bits at the loss of accuracy in the following way. They
used two methods: deterministic and stochastic. Deterministic
method is as follows:

 (2)

And stochastic is
 In addition, [3] reduced

the FPROPS by quantization the weight of the deep network
as well as activation into 2 bits, enabling faster than [2]. [4]

quantized not only weight and activation but also gradient.
Above papers don’t use quantization parameters and trained
deep networks by loss of quantized deep network.

Unlike the existing general method of minimizing the

difference between the trained network and the quantized
network, that is minimizing the quantization error, [5] used the
loss in general network learning process by back propagation
algorithm to learn quantization parameters. Quantization
parameters consist of . means center of
quantization interval, means distance from the center(is
for weight, is for activation and is for the th layer).
Weights and activations are clipped or pruned if the value is
outside the quantization interval range. Surprisingly their
method in 4 or 5bits cases preserve the accuracy of the full-
precision network. Also, the parameters are trained with
weights of deep network by general task loss. [6] also, used
learnable quantization parameters. Weights and activations
are quantized by equation [6]

 (3)

In equation is weight or activation, and when
quantize a deep network with bits,

 for weight and for activation. is
 if is less than , if it is greater than and
 if it is between. is a rounding operation. is the

quantization parameter, and it is learnable by the
gradient(straight through estimator[7], [8]) of equation (4)[6].

 (4)

They also used gradient sale, and the performance of [6] is
better than [5]. Of course, [6] and [4] quantized both weight
and activation, and minimized the loss of accuracy of the
quantized network using back propagation algorithm by SGD.
We thought that the method of [6] could be applied to
federated learning because quantization parameters can be
learned by SGD.

III. METHOD
In this paper, the quantization method of [6] is used. In

forward pass, (weight or activation) is quantized to by the
quantization parameter . The output is calculated from the
quantized deep network and input data, and the loss is
obtained. When forward pass, activation and weight
are integers, so the quantization effect is maximized in the

Fig. 1. Three layers neural network with quantization
parameters

process of . In backward pass, gradient is obtained by
loss (SGD) and back propagation algorithm is executed. Not
only the gradient of activations and weights, but also the
gradient of quantization parameters is obtained. Fig 1 is a
simplified representation of a quantized three layers neural
network by . The blue neurons are general 32bits neural
network and the black neurons are quantized networks. After
learning, only black neurons remain. The learnable parameters
in Fig 1 are weights and quantization parameters . The
first and last layers are not quantized. Quantization parameters
are for weights and for activations. In Fig 1, and
are updated as follows by chain rule.

(5)

The quantization parameters can be updated
 like the weight update , and the

FedSGD algorithm of [1] can be applied in the form of
. Like the weight in [1], it can be

expressed as follows.

 (6)

In equation (6) is the total number of data, is the
number of data the th client has. is the quantization
parameter updated by th client. is the aggregated
quantization parameter. The Since for quantization of deep
network is updated by back propagation algorithm by SGD,
weights and quantization parameters are simultaneously
updated by using loss in OQFL process. The entire process is
represented in Fig 2. First, the central server creates a deep
network and sends it to the learning participants. Second,
participants train weight and quantization parameter of the
deep network with minibatch using their own data. Third, The
deep networks trained on the device are sent to the central

server. Finally, weights and quantization parameters from
devices are aggregated on the server.

Algorithm 1 shows aggregating weights and quantization
parameters on the central server. is the number of clients
participating in learning, and clients are randomly selected
by the fraction of participation for each epoch. Weight and
quantization parameters of deep networks updated from
clients aggregated simultaneously by .
means all elements, including weight, bias, and quantization
parameter.

Algorithm 1. Server : Weights and Quantization parameters
Aggregation.

Server:

 Initialize : epochs

 number of clients

 fraction of participation

 for in range():

 random set of clients

 for in :

 Client()

Algorithm 2 shows weights and quantization parameters
update at client. We can use mini-batch by . The client trains
the deep network received from the central server with its data

 times. is the number of layers of the deep network, and
 is the activation function of relu, sigmoid, etc. The deep

network quantized in forward pass, and we can get the loss by
forward pass. The deep network, including quantization
parameters is trained in part by the
loss from forward pass. Of course, quantization parameters,
weights and bias are trained at the same time. After algorithm
2, client send the information including weights, bias and
quantization parameters to server. Then, the server execute
algorithm 1 again.

Fig. 2. OQFL process (the smart phone is the end of network, and it can be internet of things device, gateway,
base station, UAV, edge and the cloud means central server and solid line is uplink and dotted line is downlink)

Algorithm 2. Client : Weights and Quantization parameters
update.

Client():

 Initialize : batches

 : local epochs

 : number of layers

 : activation function(e.g. relu, sigmoid)

 for in range :

for in range():

 for in :

return

IV. RESULT
In this paper, we used cifar10 dataset and experimented in

iid environment. It is assumed that all data is stored on the user
devices, not central server. We simulated on pytorch and used
cross entropy function as loss, and momentum is 0.9. The total
number of clients are 100, (fraction of participation) is 0.1,

(local epochs) is 5, batch size is 100, local learning rate is
0.01(learning rate of VGG16 is 0.001).

We used ResNet[9], PreactResNet[10], MovileNetv2[11],
VGG[12] for deep convolutional neural networks. We
quantized all networks to 4bits from 32bits full precision in
OQFL process. In Fig 3. All convolutional deep neural
networks are trained with similar slopes in OQFL and
conventional federated learning(FL). You can see that OQFL
works well and it can be applied well to various convolutional
deep neural networks. However, if you look closely at the
graph, you can see the serrated shape in the graph of OQFL,
unlike FL. OQFL is more unstable than FL due to quantization,
but instability doesn’t affect training results. We can get 4bits
network after OQFL. The 4bits network has much faster
inference comparing to 32bits full-precision network.
Therefore, the quantized networks by OQFL will run more
smoothly on local devices with low computing power. In
addition, we can preserve user privacy while learning network.

Surprisingly, the 4bits networks by OQFL preserves the
accuracy of the 32bits full-precision network by FL. FL has
slightly better performance than OQFL in train dataset.
However, OQFL has better performance in most networks in
test dataset. In Table 1, all four networks(ResNet[9],
PreActResNet[10], MovileNetv2[11], VGG[12]) have same
result that the accuracy of OQFL can preserve the accuracy of
conventional federated learning. We found that the difference
between the performance in test dataset and the performance
in train dataset is lower in OQFL than FL. This means that
overfitting in FL occurs more severely than OQFL.

We found that OQFL doesn’t work when the total number
of users are 50 and is 0.1 in ResNet18[9] case. We guessed
the reason. There are 50000 training images in cifar10. In the
same environment above experiment, the first case is that each
user has 100 images, when the total number of users that
participate in OQFL is 50. the second case is that each user
has 200 images when the total number of users is 100. The
deep network is trained all of the data on user device 5times.
The deep network is trained more images in the first case.

Figure 3. Accuracy and Loss in OQFL for convolutional deep neural networks

Therefore, in second case, the difference between the received
deep network from central server and the deep network after
training in user device is more than first case. In other words,
all deep networks trained on all user devices are very different
in second case then, error occur during the aggregation by
central server. We found that the quantization parameter is
very sensitive in aggregation of OQFL. We will experiment
with different learning rates for weight and quantization
parameter, and find the optimal learning rates.

V. CONCLUSION AND FUTURE WORK
We proposed a new method to quantize deep network in

federated learning process. There is no way to quantize using
data in general federated learning. However, the proposed
method can quantize it from 32bits to 2, 3, 4bits. The
quantization parameters are easily applicable to federated
learning, because they are trained by SGD. We can get a
quantized deep network with much faster inference after
federated learning. We can simultaneously update deep
network and quantization parameters, and we can get a
quantized deep network with much faster inference after
OQFL. Surprisingly, the deep network after OQFL preserve
the accuracy of the deep network after federated learning. In
particular, OQFL has better performance than conventional
federated learning in the most networks in test dataset.

In next study, We are going to experiment OQFL in non-
iid environment and compare with iid. In addition, we will
quantize it to 2, 3bits and measure how much it preserves the
accuracy of full-precision networks. OQFL has something to
supplement. There are additional parameters for
quantization deep network, that means in OQFL, the edge
needs more computing power comparing to conventional
federated learning. Also, as more information is transmitted,
it can cause a communication bottleneck. To solve this
problem, we are going to quantize the information from
devices to central server in OQFL process for communication
efficiency.

VI. REFERENCES
[1] McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2016).

Communication-efficient learning of deep networks from
decentralized data. arXiv preprint arXiv:1602.05629.

[2] Courbariaux, M., Bengio, Y., & David, J. P. (2015). Binaryconnect:
Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems
(pp. 3123-3131).

[3] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y.
(2016). Binarized neural networks. In Advances in neural information
processing systems (pp. 4107-4115).

[4] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160.

[5] Jung, S., Son, C., Lee, S., Son, J., Han, J. J., Kwak, Y., ... & Choi, C.
(2019). Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 4350-4359).

[6] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., & Modha,
D. S. (2019). Learned step size quantization. arXiv preprint
arXiv:1902.08153.

[7] Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or
propagating gradients through stochastic neurons for conditional
computation. arXiv preprint arXiv:1308.3432.

[8] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160.

[9] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770-778).

[10] He, K., Zhang, X., Ren, S., & Sun, J. (2016, October). Identity
mappings in deep residual networks. In European conference on
computer vision (pp. 630-645). Springer, Cham.

[11] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C.
(2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4510-4520).

[12] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

 Test Dataset Train Dataset

Network Method Best Loss Best Accuracy Best Loss Best Accuracy

ResNet18
FL(32bits) 0.328594 91.73 0.039707 98.742

OQFL(4bits) 0.321792 91.6 0.054859 98.126

PreActResNet18
FL(32bits) 0.347764 91.51 0.049984 98.292

OQFL(4bits) 0.319505 92.04 0.05699 98.064

MovileNetv2
FL(32bits) 0.425524 87.86 0.165942 94.306

OQFL(4bits) 0.407621 88.49 0.215707 92.652

VGG16
FL(32bits) 0.568557 84.11 0.138565 95.184

OQFL(4bits) 0.469108 86.96 0.300512 90.216

Table 1.Conventional Federated Learning vs OQFL for various convolutional deep neural networks

