
Real-time Monitoring of Packet Processing Time
for Virtual Network Functions

Nguyen Van Tu, Jae-Hyoung Yoo, and James Won-Ki Hong

Dept. of Computer Science and Engineering, POSTECH, Pohang, Korea

Email: {tunguyen, jhyoo78, jwkhong}@postech.ac.kr

Abstract—By enabling the deployment of softwarelized net-
work functions on commodity servers, Network Function Virtu-
alization (NFV) brings many benefits such as rapid development
and deployment, simplicity and flexibility in network operations
and management. Monitoring the performance characteristics of
Virtual Network Functions (VNFs), such as packet processing
time, is crucial to achieving maximum benefit from NFV. In this
paper, we present Packer Processing Time Monitoring (PPTMon)
- a solution for real-time and lightweight VNF packet processing
time monitoring. PPTMon embeds timestamp information di-
rectly into the packets. PPTMon is implemented using extended
Berkeley Packet Filter (eBPF) - a new Linux framework that
allows high-speed packet processing. Our experiments showed
that PPTMon can monitor VNFs with high accuracy and low
performance overhead.

Keywords—Real-time Network Monitoring, Network Func-
tion Virtualization, Virtual Network Function, VNF Monitoring,
eBPF, Packet Processing Time

I. INTRODUCTION

For many years, telcos have been using proprietary mid-

dleboxes from vendors. These middleboxes implement various

network functions such as switches, routers, firewalls, network

address translations (NATs), intrusion detection/prevention

systems (IDSs/IPSs), traffic classifiers, web accelerators, and

load balancers. Because they are vendor-specific and propri-

etary, these middleboxes are very costly to deploy, operate,

maintain and upgrade. The process of deployment and upgrad-

ing is also slow and complex. In contrast, the rapid change in

the network services requirements nowadays leads to a short

life-cycle of middleboxes, thus the middleboxes need to be

upgraded more frequently. Eventually, telcos need to pay high

operating expenses (OPEX) and capital expenses (CAPEX).

Network Function Virtualization (NFV) [1] is an effort

to tackle these problems. NFV decouples the hardware and

software parts of the middleboxes, turns the network functions

into plain software that can run on any industry-standard,

commodity servers, thus called Virtual Network Functions

(VNFs) [1]. NFV has a set of standards so that VNFs are

vendor-neutral and can be easily chained together to provide

useful services. Telcos have many benefits from applying

NFV: lower deployment and maintenance cost, faster upgrade

process, and more flexible in operation and management. NFV

also has positive effects on the vendor side. New vendors have

a chance to join the market, old vendors also need to join the

NFV development if they do not want to fall behind and lose

their customers.

Monitoring is crucial to the deployment, operation and

management of any networking systems, including the NFV

system. One of the most important key performance indicators

of VNFs is the packet processing time, i.e., from the time

when a packet goes in the VNF to the time when the packet

goes out of the VNF. Monitoring packet processing time

helps to ensure that VNFs are working correctly with the

expected performance. The monitoring data can also be used

as inputs for VNF modeling or machine learning-based NFV

management systems. However, while NFV has been one of

the main research topics in recent years, monitoring VNF

packet processing time is still a challenge.

In this paper, we present PPTMon - a solution for real-

time and light-weight packet processing time monitoring.

PPTMon’s algorithm embeds a custom timestamp header into

the packet header. The header is inserted at the ingress point

and removed at the egress point. Because adding a custom

header to a packet can potentially affect how the VNF pro-

cesses the packet, the PPTMon header format is carefully con-

sidered so that PPTMon is transparent to the legacy PPTMon-

unaware VNFs. We implemented the algorithm in PPTMon

using extended Berkeley Packer Filter (eBPF) [2] - a new

Linux kernel framework that allows high-performance packet

processing. We evaluated PPTMon in real NFV environment

using OpenStack [3]. The evaluation results showed that

PPTMon has an average of 3.6% performance reduction when

doing stress test with various VNFs.

The remainder of the paper is organized as follows. In

Section II, we present the background and related work. In

Section III, we present the detailed algorithm, header format,

and implementation of PPTMon. Section IV shows the evalu-

ation results of PPTMon and discusses PPTMon’s limitations

and future improvements. Finally, Section V concludes this

paper.

II. RELATED WORK

In this section, we cover related work about monitoring

packet processing time and VNF performance in general. We

also cover eBPF and discuss its performance advantage.

A. Packet processing time monitoring

There are several methods and research efforts to monitor

packet processing time in VNFs. A very naive method is to

capture ingress and egress packets with timestamps using tools

such as tcpdump1, then subtract the timestamp values. How-

ever, capturing every packet inside a VNF incurs very high

overhead, thus greatly reduces the throughput and increases

the latency of the VNF. Hence, this method is impractical in

production systems and only suitable for debugging and offline

testing purposes.

NFVPerf [4] moves the packet capture functions out of

the VNF by mirroring all VM-to-VM traffic to a central

processing node. NFVPerf uses deep packet inspection to

analyze the traffic metric such as delay and CPU usage. Using

this approach, NFVPerf can minimize the negative effect on

the VNF, at the cost of extra network bandwidth and an extra

dedicated node for NFVPerf processing.

KOMon [5] eliminates the packet capture overhead by using

a different approach. KOMon uses a kernel module to inspect

traffic at the ingress point of a VNF, saves the payload hash

and timestamp into a queue. At the VNF egress, KOMon

tries to match the payload hash value of the packet with the

ingress payload hash. If the values are the same, then KOMon

substracts the timestamp to get the packet processing time.

KOMon thus can provide real-time data with low overhead.

However, KOMon has some limitations. KOMon only works

with VNFs that process packets in FIFO model and does

not change the packet payload, KOMon is implemented as

a custom kernel module, thus it has potential security and

stability issues. Also, the payload hash method can potentially

cause incorrect measurements in the case of packets with the

same payloads (e.g., re-transmission, packet dropped).

SymPerf [6] uses code analysis to predict the performance

of a VNF during run-time. Therefore, SymPerf does not have

any performance impact on the VNFs at all. However, SymPerf

requires access to the VNF source code, which is not always

available, e.g., black-box VNFs, or VNFs from third-party

vendors. Also, the unpredictable events, such as anomalies that

increase packet processing time, can not be captured during

the run-time.

In [7], authors use ICMP echo request and reply packets

to measure the packet processing time of a physical host.

The method can monitor delay without any software injection

on the host. However, because the method requires a special

packet-capture card with timestamp function, it is only avail-

able for physical host, not VM. Also, the processing time of

ping packets does not necessarily represent the processing time

of other packets.

B. extended Berkeley Packet Filter

extended Berkeley Packet Filter (eBPF) [2] is a Linux kernel

framework that allows attaching user-supplied programs to a

kernel event type. An eBPF program lives inside the Linux

1tcpdump, https://www.tcpdump.org

kernel as a light-weight virtual machine and is called when

the event happens. An eBPF program is written in a restricted

subset of C language and is compiled to eBPF instruction set

which is mapped closely to the hardware instruction set. Also,

eBPF compiler supports just-in-time compilation. Therefore,

eBPF provides performance closes to the native C code.

Although running inside the kernel, unlike a custom kernel

module, eBPF programs are verified using kernel eBPF verifier

during the compile-time to ensure the safety and security of

the kernel. Also, the exposed interface to write eBPF program

is stable, thus programmers do not need to worry about

maintaining the compatibility with the new kernel versions

like a custom kernel module.

eBPF can be used for high-performance packet processing

[8]. In networking, an eBPF program can be attached to several

layers in the kernel networking stack, such as traffic control

or socket layer, and is called when a packet event happens,

such as a packet received or sent. Because eBPF is well

integrated with the kernel networking stack, the post-processed

packet can be passed to the kernel stack for processing as

normal. Compared to the user-space equivalent program, an

eBPF program does not have the overhead of kernel-user space

context switching. Also, the kernel creates a copy of the packet

when sending it to the user-space program, while the eBPF

program processes the packet in-stack and does not require

packet copy.

III. DESIGN AND IMPLEMENTATION

In this section, we show the detailed algorithm and work-

flow of PPTMon. We present the PPTMon header format and

discuss why we chose such a design. Then we present the

implementation detail of PPTMon with eBPF.

A. PPTMon’s algorithm

Fig. 1: PPTMon algorithm

The idea of PPTMon is to attach a timestamp field into

the packet header when the packet arrives at the VNF. Then

when the packet is sent out, PPTMon calculates the packet

processing time and removes the timestamp field. Fig. 1

shows the algorithm of PPTMon. At the early stage when

the packet arrivals at a VNF, PPTMon inspects the packet

and checks if the condition to inject the PPTMon header

is passed. PPTMon then adds the PPTMon header with the

current timestamp to the packet, updates the equivalent packet

length and checksum, then passes the packet to the kernel

networking stack. After the packet is processed by the VNF

function, the packet is inspected by PPTMon before sent out.

If the packet has a PPTMon header, the processing time is

calculated as the difference between the current time and

the stored timestamp. The accuracy of the PPTMon is thus

guaranteed by the algorithm. The PPTMon header is then

removed, packet length and checksum is restored, then the

packet is sent out of the VNF.

Because running PPTMon for every packet can cause a high

overhead and unnecessary huge amount of data, especially for

high-throughput VNFs with hundreds of thousands of packets

per second, we use sampling for PPTMon and leave the user to

choose the sampling rate. When a new packet arrives, PPTMon

simply checks the time passed from the last sampling, and if it

exceeds the sampling period, a new PPTMon header is inserted

into the packet.

B. PPTMon’s header format

PPTMon header needs to be carefully designed because it

is exposed to VNF and can potentially change the way VNF

processes the packet. In PPTMon, PPTMon header is added to

the packet in a TCP option field. The format of the PPTMon

header as a TCP option is shown in Fig. 2, following the

standard TCP option format [9]. PPT H KIND is set to 254,

which is defined as an experimental option and should be

ignored by the PPTMon-unaware VNFs, thus making PPTMon

transparent to these VNFs. PPT H SIZE is the total length of

the PPTMon header in bytes and is always set to 12 bytes.

PPT H TSTAMP is a 64 bits value that stores the intermediate

host time in nanoseconds.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TCP header (w/o option) |
 +-+
 | PPT_H_KIND | PPT_H_SIZE | PPT_H_EXID |
 +-+
 | PPT_H_TSTAMP |
 | |
 +-+
 | Original Options | Padding |
 +-+
 | data |
 +-+

Fig. 2: PPTMon header as TCP option

Although applying a new TCP option kind requires proper

registration [10], we design PPTMon so that it can be used in

production without registering a new TCP option kind. Firstly,

PPTMon header only exists when the packet is inside a VNF,

thus PPTMon does not expose to the rest of the network and

the Internet. Secondly, we follow the rule to share the usage

of TCP experimental option [11] in a controller environment

by setting a dedicated PPT H EXID for PPTMon.

While PPTMon header is currently only applied to TCP

packets, it is also possible to insert PPTMon header as a UDP

option [12]. In the UDP packet, both IP length field and UDP

length field contains the header and data length. The redundant

information can be used to indicate extra UDP option at the

end of the UDP packet payload and it is permissible [12].

Moreover, while it is possible to put PPTMon as an IP option,

several VNFs, such as iptables NAT, modify the IP header

and may drop the IP option, thus losing the PPTMon header

during the process.

C. Implementation

PPTMon is implemented in eBPF using BCC2 - a frame-

work for compiling and running eBPF programs. The eBPF

code is attached to the Traffic Control (TC) clsact [13] at

both ingress and egress, as shown in Fig. 3. Note that the

VNF can also live in kernel space, such as iptables firewall3.

The userspace module of PPTMon handles the processing of

attaching and detaching eBPF programs to the kernel. It also

handles the packet processing time reported by the PPTMon

eBPF egress.

Fig. 3: PPTMon with traffic control clsact

In a precise definition, PPTMon measures the time from

the TC clsact ingress, when Linux packet buffer skb is just

created in the kernel; to the TC clsact egress, when the packet

is already sent back to the kernel and is about to be sent

out of the VNF. This measured time is the sum of the plain

VNF processing time and the time Linux kernel handles the

packet. The time Linux kernel handles the packet is negligible

compared to the VNF processing time in normal cases, but it

can be significant at high-speed VNF (e.g., iptables firewall),

or when there are anomalies. Hence, PPTMon measured

packet processing time actually provides a better metric to

evaluate the state of the VNF than the plain VNF processing

time.

In this work, PPTMon is implemented using eBPF. How-

ever, the same approach and algorithm can be applied for other

2BPF Compiler Collection, https://github.com/iovisor/bcc
3iptables, https://www.netfilter.org/projects/iptables/index.html

network stacks, such as DPDK4. Besides, in the case of using

old Linux kernels that do not support eBPF, PPTMon can be

implemented as a kernel module like KOMon [5]. We plan

to publish PPTMon’s source code when the UDP support is

added in the near future.

IV. EVALUATION

In this section, we present evaluation of three aspects of

PPTMon: the average reported processing time, the effect of

sampling rate to the performance, and the real-world perfor-

mance when using PPTMon with the popular VNFs, such as

firewall, NAT, IDS, DPI, and load balancer. We also discuss

the limitations of PPTMon and future work for improvements.

A. Testbed setup

To evaluate PPTMon and observe how PPTMon performs in

real use cases, we deployed our test scenarios using OpenStack

[3], an open standard platform for cloud computing and NFV.

The testbed deployment is shown in Fig. 4. We used a separate

controller node to host OpenStack controller services so that

their CPU usage does not affect the evaluation result. All VMs

and VNFs were deployed on one OpenStack compute node.

Although there are usually multiple compute nodes in a real

operation environment, using only one compute node in this

testbed does not affect the purpose of our experiments. We

used Open vSwitch (OvS)5 for inter-VM and VNF networking.

All VMs and VNFs ran Ubuntu server 19.10 with kernel v5.3.

Each VNF was allocated 2 vCPU and 2 GB of RAM. The

OpenStack compute node is a Dell R610 server with 2 Intel

Xeon X5650 CPUs and 24GB RAM, distributed in 2 NUMA

nodes, with hyper-threading is enabled.

Fig. 4: PPTMon testbed with OpenStack

In all the tests, three VMs are used: two VMs ran as client

and server, one VM was used for VNF deployment. In the

case of transparent VNFs (firewall, IDS, DPI), OpenStack

networking-sfc6 was used to create the network function

4DPDK, https://www.dpdk.org
5OvS, https://www.openvswitch.org
6networking-sfc, https://opendev.org/openstack/networking-sfc

chains to forward packets via the VNF.

B. Average processing time

In this scenario, we compared the values measured by

PPTMon and tcpdump. Although PPTMon accuracy is ensured

by the algorithm, the value only represents the delay time of

the sampled packets, not all packets. Thus, we used tcpdump

to capture all packets with timestamps to see whether PPTMon

could represent the average packet processing time of the VNF.

In the test, both client and server ran iperf37 and exchanged

TCP traffic. The VNF ran both PPTMon and tcpdump. Be-

cause of the tcpdump overhead, we ran iperf3 at low through-

put (500 Kbps) so that the overhead of tcpdump would not

affect the accuracy of the measurement. The VNF is iptables

firewall with an increasing number of rules. We used dummy

rules that did not match the iperf3 traffic, i.e., all packets need

to be matched again all rules before going to the default rule,

which forwards packets to the server. For each VNF setup, we

ran the iperf3 traffic in 20 seconds and repeated 5 times.

0

35

70

0 500 1000 1500 2000 3000 5000

Pr
oc

es
sin

g
tim

e
[u

s]

Number of iptables rules
PPTMon tcpdump

Fig. 5: Average packet processing time reported by PPTMon

and tcpdump

The results are shown in Fig. 5. Intuitively, the processing

time measured by both PPTMon and tcpdump increases when

the number of flow rules increases. In all the cases, the average

packet processing time reported by PPTMon was lower than

the one from tcpdump. The average of the differences was

6.5 μs, with a standard deviation of 0.9 μs, which was quite

stable. While both PPTMon and tcpdump work at the low level

of the kernel stack, the differences are caused by the overhead

of tcpdump. Because the value reported by tcpdump is the

average of all packets, we conclude that PPTMon reported

measurements can represent the average packet processing

time.

This experiment also showed the baseline minimum latency

of the kernel. In the case there is no firewall rule, the VNF

just forwards the packet to the server right inside the kernel.

The average delay measured by PPTMon was 8.5 μs with the

standard deviation of 0.5 μs. The result was similar when the

tcpdump is disabled.

7iperf3, https://iperf.fr

C. Effect of sampling rate

In this test, we measured how the sampling rate of PPTMon

affects the performance. The VNF ran iptables firewall with

no rules. The client and server ran iperf3. We recorded the

average TCP throughput reported by iperf3 when the sampling

rate is changed. Each run lasted 20 seconds and was repeated

5 times. The results are shown in Fig. 6.

1

1.5

2

20 10 2 1 0.5 PPTMon
Disable

Th
ro

ug
hp

ut
 [G

bp
s]

Sampling rate [pps]

Fig. 6: Average throughput when changing the PPTMon

sampling rate

The average throughput was slightly reduced when the

sampling rate increased, with 5.7% reduction at 20 samples

per second and 3% at 0.5 samples per second. We consider

5.7% is a small number, especially when the VNF is very

lightweight: it just forwards the packets to the server directly

in the kernel space. With more esource-intensive VNFs such as

IPS, the throughput reduction caused by PPTMon is negligible,

as will be shown in Section IV-D.

This experiment suggests two ways of using PPTMon. If

users want to get the exact value of the sample packets every

N sec (e.g., 1 sec), then the sampling rate can be set to

1/N packet per second (pps) (e.g., 1 pps). If the users want

to get the average processing time of last N sec, then use

can sample packets at 10x sampling rate 10/N pps (e.g., 10

pps for N = 1 sec), and then report the average of last 10

measurement values. The throughput difference between the

sampling rate of 1 pps and 10 pps is only 1%. Thus, there is

no real performance disadvantage.

D. Real-world performance

TABLE I: VNF configurations

VNF type Software Configuration

firewall iptables netfilter 20 non-matching rules

DPI nDPI nDPI reader v3.2 stable with
iperf3 protocol detection

IPS Suricata Suricata v4.1 in IPS mode
with default rule set

NAT iptables netfilter full NAT mode

load balancer IPVS IPVS load balancer in desti-
nation NAT mode

In this test, we measured the maximum throughput of

various VNFs when PPTMon is enabled and disabled. The

VNF collection includes iptable firewall, Suricata8 IPS, nDPI9

DPI, iptables NAT, and IPVS10 load balancer. The detailed

configuration of each VNF is shown in Table I. When enabled,

PPTMon’s sampling period is set to 1 sec. Both client and

server ran iperf3 and we recorded the average throughput.

Each run lasted 20 seconds and was repeated 5 times. The

result is shown in Fig. 7.

0

0.5

1

1.5

2

IPS (suricata) DPI (nDPI) FW (iptables) NAT (iptables) LB (IPVS)

Th
ro

ug
hp

ut
 [G

bp
s]

1 sample/s PPTMon disabled

Fig. 7: Throughput when enable/disable PPTMon with various

VNFs

In general, the throughput is slightly reduced when PPTMon

is enabled. The percentages of throughput reduction were

0.6%, 3.9%, 5.9%, 0.4% and 7.2% for IPS, DPI, FW, NAT and

LB, respectively. The effect of PPTMon overhead on through-

put was reduced when the VNF is more resource-intensive

and was increased when the VNF is more lightweight, except

the case of NAT. In the case of iptables NAT, which is a

lightweight VNF, the throughput reduction of PPTMon is only

0.4%. The average throughput reduction of all VNFs was

3.6%, and we consider it a small overhead.

E. Limitations and improvements

1) Limitations: Storing timestamp in the TCP option field

implies one limitation of PPTMon: it does not work for VNFs

which drop the TCP option header. However, many of the

VNFs do not modify the packets (e.g., firewall, DPI, IDS and

IPS), hence PPTMon works well with these VNFs. For the

VNFs which modify the packets (e.g., NAT), PPTMon will

work as long as the TCP option field is not removed.

In the case of load balancers, some load balancers, such

as HAProxy11, modify the TCP layer and drop the PPTMon

header; while other load balancers, such as IPVS, keep the

TCP header. Thus, PPTMon does not work with HAProxy,

but it works with IPVS. Finally, if developers create new

VNFs, then they just need to keep the PPTMon header to

make PPTMon and the VNFs work together.

2) Improvements: There are three directions to improve the

functionality of PPTMon. The first direction is to add UDP

monitoring function to PPTMon, as discussed in Section III-B.

The second direction is to deploy PPTMon in the physical

host where VNF VMs are located instead of running directly

8suricata, https://suricata-ids.org
9nDPI, https://github.com/ntop/nDPI
10IPVS, http://www.linuxvirtualserver.org/software/ipvs.html
11HAProxy, http://www.haproxy.org

inside the VMs. PPTMon can attach its eBPF ingress and

egress program to the virtual NIC of the VNF. There are two

advantages: PPTMon can run more efficiently in a physical

host than inside a VM, and the performance of the VNF is

not affected by PPTMon.

The third direction is to monitor the latency of the whole

service function chain (SFC) by adding the timestamp infor-

mation to the PPTMon header when a packet enters any VNF

and then extracts all of the PPTMon timestamp data at the

end of the service chain. The idea is inspired by how In-

band Network Telemetry [14, 15] has been successfully done

the end-to-end network monitoring in programmable switches.

By doing this way, PPTMon can report end-to-end packet

processing time measurement instead of per-hop measurement.

V. CONCLUSION

In an NFV system, Monitoring VNFs, particularly the

VNF packet processing time, is crucial for NFV operation

and management. In this paper, we proposed PPTMon - a

solution for real-time and light-weight packet processing time

monitoring. PPTMon works by attaching timestamp data to

the packet header at the VNF ingress, then calculating the

processing time at the VNF egress. We presented the detailed

design and implementation of PPTMon. The evaluation results

showed that PPTMon is accurate and light-weight. PPTMon

has an overhead of 3.6% VNF throughput reduction on average

when doing stress test.

We have several directions to improve PPTMon, as dis-

cussed in Section IV-E. Firstly, we plan to add UDP support

to PPTMon. Secondly, we will modify PPTMon to support

monitoring from the side of the physical hosts. Finally, we

will develop the SFC monitoring function so that PPTMon can

provide end-to-end measurements instead of per-hop measure-

ments.

ACKNOWLEDGMENTS

This work was supported by the Institute of Information

& Communications Technology Planning & Evaluation (IITP)

grant funded by the Korean government (MSIT) (2018-0-

00749, Development of Virtual Network Management Tech-

nology based on Artificial Intelligence).

REFERENCES

[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and Re-
search Challenges,” in IEEE Communications Surveys Tutorials, vol. 18,
2016, pp. 236–262.

[2] A. Starovoitov, “BPF – in-kernel virtual machine,” Linux Kernel Devel-
opers’ Netconf, 2015.

[3] “Openstack.” [Online]. Available: https://www.openstack.org
[4] P. Naik, D. K. Shaw, and M. Vutukuru, “NFVPerf: Online performance

monitoring and bottleneck detection for NFV,” in 2016 IEEE Conference
on Network Function Virtualization and Software Defined Networks
(NFV-SDN), 2016, pp. 154–160.

[5] S. Geissler, S. Lange, F. Wamser, T. Zinner, and T. Hoßfeld, “KOMon
— Kernel-based Online Monitoring of VNF Packet Processing Times,”
in 2019 International Conference on Networked Systems (NetSys), 2019,
pp. 1–8.

[6] F. Rath, J. Krude, J. Rüth, D. Schemmel, O. Hohlfeld, J. A. Bitsch,
and K. Wehrle, “SymPerf: Predicting Network Function Performance,”

in Proceedings of the SIGCOMM Posters and Demos, ser. SIGCOMM
Posters and Demos ’17, 2017, p. 34–36.

[7] K. M. Salehin and R. Rojas-Cessa, “Measurement of packet processing
time of an Internet host using asynchronous packet capture at the data-
link layer,” in 2013 IEEE International Conference on Communications
(ICC), 2013, pp. 2550–2554.

[8] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network service with eBPF: Experience and lessons
learned,” High Performance Switching and Routing (HPSR), 2018.

[9] J. Postel, “Transmission Control Protocol,” RFC Editor, STD, September
1981. [Online]. Available: https://tools.ietf.org/html/rfc793

[10] S. Bradner and V. Paxson, “IANA Allocation Guidelines For Values In
the Internet Protocol and Related Headers,” RFC Editor, BCP, March
2000. [Online]. Available: https://tools.ietf.org/html/rfc2780

[11] J. Touch, “Shared Use of Experimental TCP Options,” RFC Editor, RFC,
August 2013. [Online]. Available: https://tools.ietf.org/html/rfc6994

[12] J. Touch, “Transport Options for UDP,” RFC Editor,
Tech. Rep., 2019. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-tsvwg-udp-options

[13] D. Borkmann, “Advanced programmability and recent updates with tc’s
cls bpf,” Proc. NetDev, vol. 1, 2016.

[14] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.

[15] J. Hyun, N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Real-time and
fine-grained network monitoring using in-band network telemetry,”
International Journal of Network Management, vol. 29, no. 6, 2019.

