
Topic-based Allocation of Distributed Message
Processors on Edge-Servers for Real-time

Notification Service

Tomoya Tanaka
Graduate School of System Informatics

Kobe University
Kobe, Japan

tomoya.tanaka@fine.cs.kobe-u.ac.jp

Tomio Kamada
Graduate School of System Informatics

Kobe University
Kobe, Japan

kamada@fine.cs.kobe-u.ac.jp

Chikara Ohta
Graduate School of Science, Technology

and Innovation
Kobe University

Kobe, Japan

chikara@m.ieice.org

Abstract—The importance of real-time notification has been
growing for social services and Intelligent Transporting System
(ITS). As an advanced version of Pub/Sub systems, publish-
process-subscribe systems, where published messages are spooled
and processed on edge servers, have been proposed to achieve
data-driven intelligent notifications. In this paper, we present a
system that allows a topic to be managed on multiple edge servers
so that messages are processed near publishers and subscribers,
even when publishers are spread over a wide area. However, per-
mitting a topic to use multiple edge servers can cause exhaustion
of resources as the number of topics and consumed resources
by each topic increase. We formulate the delay caused by the
depletion of edge server resources to find the optimal allocation
of topics on limited edge server resources. As the optimization
problem is NP-hard, we propose heuristics leveraging the given
locality and the pub/sub relationships observed between clients
to use the edge server resources efficiently while delivering real-
time notifications. The experimental results demonstrate that
the proposed method reduces the delay to deliver notifications
and the effectiveness of the strategy exploiting the relationships
between clients.

Index Terms—Real-time notification, multi-access edge com-
puting, publish-process-subscribe model

I. INTRODUCTION

In recent years, the importance of real-time and data-driven

notification has been growing dramatically for applications

such as social services, IoT applicaitons, and Intelligent Trans-

porting System (ITS) [1]. For example, real-time decision-

making services proposed in ITS are expected to react im-

mediately to changes in traffic conditions, analyze the current

conditions, and provide optimal behavior for vehicles [2]. To

achieve instant reactions to changed conditions and immediate

data-driven notifications to clients, Multi-access Edge Comput-

ing (MEC) and Pub/Sub messaging models have been used.

MEC, proposed by the European Telecommunications Stan-

dards Institute (ETSI), enables ultra-low latency and high

bandwidth by geographically distributing computation and

storage resources to edge servers [3]. MEC has already been

applied to IoT, AR / VR, and traffic management [1]. Pub/Sub

model can be adapted to the design of large-scale distributed

systems such as MEC [4]. Topic-based and content-based

Pub/Sub model has been used in social interaction message

notifications and event notifications among vehicles [5], [6].

In a more sophisticated version of Pub/Sub, spooling pub-

lished messages on edge servers enables data-driven notifica-

tions supported by an analysis of the spooled messages, which

is called publish-process-subscribe pattern [7].

We consider a publish-process-subscribe system, where

each edge server generates and transmits the data-driven

notifications near publishers and subscribers to achieve real-

time notifications. Each edge server has a message processor

for each topic managed by the edge server. The message

processor functions as a message spooler and an analyzer

of the spooled messages. Each edge server functions as a

broker which receives messages from publishers and delivers

the notifications produced by the message processors to the

clients. Our system generates notifications and delivers them

to subscribers in the following steps. When an edge server

receives a message, it transmits this message to the message

processor of the matching topic. The message processor gen-

erates notifications by analyzing the published message with

the spooled messages, and returns the produced notifications

to the edge server. Finally, the edge server disseminates the

produced notifications to the subscribers.

In our system, a topic can be managed on multiple edge

servers so that all publishers to a topic can send messages

to their nearby edge server, considering applications where

publishers to a topic spread over a wide area [8]. As an

example of such applications, let us consider preventing ac-

cidents caused by a speeding vehicle. In this case, publishers

such as IoT sensors and cameras in a wide area spanning

several intersections, would send messages to a topic. Then,

edge servers should send alert notifications to subscribers in

the immediate vicinity of the speeding vehicle as well as

subscribers further away.

Our system enables real-time notifications regardless of

the locality of publishers and subscribers with the following

advantages: (1) publishers can send messages immediately to

their nearby edge server (e.g. the nearest one) which manages

their target topic; and (2) subscribers can receive notifications

immediately from their nearby edge server. On the whole,

each edge server that manages a topic can mediate between

publishers and subscribers for each area according to the

position of the edge server, cooperating with other servers.

Note that a message published to a message processor on

an edge server is also added to the message processors of

the other edge servers. Thereby, each edge server can use

messages published to other edge servers.

Due to the limited resources on edge servers, preparing

a message processor on multiple edge servers for a topic

causes exhaustion of the storage capacity. An efficient use

of computational resources represented by brokers, which

perform streaming message analysis in the publish-process-

subscribe paradigm, is presented in [9]. In contrast, our focus

is to utilize storage capacity on edge servers efficiently while

enabling a topic to be managed on multiple edge servers.

In this paper, we propose an adequate allocation of topics

on edge servers with limited edge server resources to achieve

real-time notifications in the publish-process-subscribe system.

A simple idea to resolve storage capacity over-consumption

caused by preparing a topic’s message processor on multiple

edge servers consists in decreasing the number of edge servers

to manage the topic. Though this measure reduces storage

capacity usage, it spoils proximity between several publish-

ers/subscribers and message processors. Therefore, decreasing

the number of edge servers to manage a topic causes delays

due to the marred proximity. Because of the involved trade-

offs, investigating the optimal allocation of topics is necessary

to enable real-time notifications.

This paper makes the following key contributions:

• We formulate the delay to deliver notifications to sub-

scribers considering the resource constraints on edge

servers as an optimization problem. The formulated prob-

lem gives optimal allocation of topics on edge servers in

a publish-process-subscribe system.

• As the formulated optimization problem is NP-Hard, we

propose a heuristics named RELOC, which allocates top-

ics on edge servers so that notifications can be delivered

to subscribers immediately. The method is constructed

based on an analysis of the formulated optimization

problem. We exploit given locality and topic-derived re-

lationships observed among publishers and subscribers to

use storage capacity efficiently while keeping proximity

between clients and a message processor.

The remainder of this paper is organized as follows: Sec-

tion II clarifies the position of our research, giving an overview

of related work. In Section III, We formulate a cost model

based on the presented notification system. In Section IV, we

elaborate on our client assignment method with an analysis

of the formulated cost model. Simulation results are shown to

demonstrate the performance of our method in Section V.

II. RELATED WORK

Publish-process-subscribe based real-time communication is

investigated in several recent studies [7]. The message process-

ing causes critical problems in achieving real-time notifications

due to the processing load. Khare et al. present techniques

to realize a scalable broker architecture that balances data

publication and processing load for publish-process-subscribe

systems operating at the edges, and ensures Quality-of-Service

(QoS) on a per-topic basis [9]. In the publish-process-subscribe

paradigm, we further consider applications where publishers

spread over a wide area [8]. For such applications as well as

ones where publishers and subscribers close together, man-

aging a topic on multiple edge servers or brokers, which is

not assumed in [9], has the potential to enable real-time noti-

fications. However, prepared message processors on multiple

servers could cause storage capacity over-consumption.

Considering the limited resources of edge servers, many

researchers focus on proactively fetching content on edge

servers to improve latency for clients to obtain content. The

criteria to determine which content should be cached and

where include: (1) content request probability [10], [11], where

the most popular content is cached on edge servers; or (2)

client mobility [12], [13], where content is cached on an

edge server near the client who will request the content. In

contrast, in publish-process-subscribe systems, the messages

or data objects to be stored on edge servers is determined by

topics and publishers/subscribers relationships. Nagato et al.

propose a distributed data framework in a pub/sub paradigm. It

enables proactive caching based on pub/sub relationships given

by developers, but it does not consider resource capacity nor

data processing [14]. In this research, we propose the efficient

use of the limited storage capacity and other resources of

edge servers with adequate allocation of topics to deliver real-

time notifications. In [15], we are also investigating the trade-

off between the network latency and storage consumption

assuming no storage capacity limitation. To the best of our

knowledge, topic-allocation-based messages management on

edge servers in publish-process-subscribe paradigm has not

been presented before.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we investigate the optimal allocation of

topics considering the resource constraints of edge servers

to enable real-time notification in publish-process-subscribe

system by formulating an optimization problem. The cost of

the formulated optimization problem is as the delay between

the publication of a message and the transfer of notifications

to subscribers.

The optimization problem is formulated with the follow-

ing assumptions: (1) Each publisher is assigned to an edge

server which manages the publisher’s target topic; (2) Each

subscriber is also assigned to an edge server, but it only

relays notifications to the subscribers without managing the

subscriber’s target topic; (3) The assigned edge server of

each publisher manages the publisher’s target topic, but when

storage capacity on the server is exhausted, it prepares the

message processor with spooled messages for the topic on a

cloud server; and (4) When the assigned server does not have

the message processor, published messages are forwarded to

the cloud server.

We call the server assigned to each client the “home server”.

By assigning a home server to each client, publishers can send

messages to their home server without having to locate an

edge server which manages their target topic. On the other

hand, subscribers can receive messages from their home server

automatically, combined with push notification technology.

How we assign home servers to publishers determines the

allocation of topics because the target topic of a publisher is

always managed by its home server. If publishers for the same

topic are assigned to different servers, the topic is managed by

multiple edge servers. Moreover, we must be aware of home

servers of subscribers to enable them to obtain notifications

from their nearby servers. We define the assignment of a

home server to each client as the strategy of the optimization

problem. By defining the strategy as an assignment method

for each client, we can consider the optimal allocation of

topics from the point of view of publishers and subscribers. In

the following sections, we show the relation between the cost

and the strategy while modeling our publish-process-subscribe

system followed by a formal definition of our optimization

problem.

A. System model

We consider a field with L edge servers denoted S =
{s1, s2, · · · , sL}. In the field, M active clients, denoted C =
{c1, c2, · · · , cM}, move freely. Each client cm ∈ C has a home

server sl ∈ S . Let Cl denote the set of clients whose home

server is sl. The set of clients C is divided into L subsets,

C1, C2, · · · , CL. Note that the home server assignment of a

client can change when the client moves.

We have assumed that when a publisher’s home server

does not have the message processor, published messages are

forwarded to a cloud server. Let dC denote the delay caused by

the forwarding to a cloud server. We define that dC does not

depend on the server sl from which the published message is

forwarded. Delay in the path between a client cm and its home

server sl is denoted as dH
l . dC > dH

l because of the expensive

traffic through the core network. Note that we assume that

resource exhaustion on edge servers does not cause additional

delay compared to the propagation times when servers do

not suffer from resource exhaustion. The propagation delay

between edge servers is therefore kept at 0.

Fig. 1a shows the route and process from the publication of

a message by a publisher cm, to the delivery of a notification

to a subscriber cm′ when the message processor is present

on the publisher’s home server. The home server of publisher

cm is sl, whereas the home server of subscriber cm′ is sl′ .
Fig. 1b presents the case where the message processor is

not prepared on the publisher’s home server. We divide the

processes into two steps: before, and after the notification is

generated. The delay in these two steps is denoted as DP
m

and DS
m′ , respectively. In the case of Fig. 1a, DP

m and DS
m′

equal dH
l and dH

l′ , respectively. On the other hand, in the case of

Fig. 1b, DP
m and DS

m′ equal dH
l +dC and dH

l′+dC, respectively.

Let rl represent the probability that the publisher cm’s home

server sl does not have the message processor for a target

Fig. 1. Route and process to deliver a notification to a subscriber

topic. In this case, notifications are generated and transmitted

from cloud server, which yields an additional delay dC to both

DP
m and DS

m′ .

B. Problem formulation

The strategy of the optimization problem is denoted by a

binary matrix X = {xm,l|cm ∈ C, sl ∈ S}. If cm’s home

server is sl (i.e. cm ∈ Cl), xm,l = 1, whereas xm,l = 0 in the

other cases. Our objective is to find the optimal X such that

the delay DP
m +DS

m′ is minimized.

dH
l involves delay caused by notable resource constraints

on an edge server sl. Let dH
l,1 denote the delay caused by

the number of clients assigned to an edge server sl exceeding

the limit B. Moreover, let dH
l,2 denote the delay caused by the

geographical distance between a client cm and its home server

sl. The distance between cm and sl is denoted as gm,l. We

express dH
l by the sum of dH

l,1 and dH
l,2, i.e. dH

l = dH
l,1 + dH

l,2.

Reducing the value of rl and keeping dH
l small is in-

compatible. The value of rl is kept small by decreasing the

number of edge servers to manage a topic. In other words, the

value of rl is reduced by assigning publishers to fewer edge

servers. However, assigning publishers to a smaller number

of edge servers increases the value of dH
l,1 and dH

l,2 because

it increases the number of clients assigned to an edge server

and it decreases the proximity between clients and their home

servers. We investigate an optimal strategy to resolve the trade-

offs by formulating the problem mathematically.

We obtain an optimal solution based on the last N message

publications. Let Pi, and Si denote the set of publisher,

and subscribers who involve data transfer i (1 ≤ i ≤ N),

respectively (|Pi| = 1, |Si| ≥ 1). We define the following

optimization problem:

min

N∑
i=1

Di, (1)

s.t. xm,l = {0, 1}, ∀cm ∈ C, sl ∈ S, (2)
L∑

l=1

xm,l = 1, cm ∈ C, (3)

where

Di =
∑

cm∈Pi

DP
m +

1

|Si|
∑

cm∈Si

DS
m. (4)

DP
i and DS

i are expressed as

DP
m = DS

m =
L∑

l=1

(dH
l + rld

C)xlm, (5)

where the probability that notifications are generated and

transmitted at a cloud server rl is expressed as

rl = R(1− A

ul
), (6)

where R(x) is a ramp function defined as R(x) = max(x, 0),
A is the storage capacity on each edge server, and ul is the

total size of spooled messages managed by the edge server sl.
The messages are spooled in a message processor on the server

sl or in a message processor on a cloud server. rl is 0 when the

total size of spooled messages managed by server sl is smaller

than A. dH
l involves delay dH

l,1 and dH
l,2 (dH

l = dH
l,1 + dH

l,2). We

express dH
l,1 as

dH
l,1 = βR(|Cl| −B), (7)

where β is an additional delay per an exceeded assignment of

clients. We define dH
l,2 as

dH
l,2 = γgm,l, (8)

where γ is the delay per kilometer. The optimization problem

is NP-Hard because it is a kind of set partitioning prob-

lem [16]. Therefore, we develop heuristics by an analysis of

the formulated optimization problem.

IV. RELOC ALGORITHM

We develop a heuristics named RELOC (RElation and

LOcality conscious Cooperative client assignment), which de-

termines the strategy X that reduces the value of Di resolving

the trade-off between rl and dH
l . RELOC exploits notable

features of publishers and subscribers, namely locality and

topic-derived relationships.

Initially, RELOC divides a field into K clusters based on

the position of edge servers using the K-means clustering

algorithm. A client is only assigned to a server belonging to the

closest cluster so that the value of gm,l is reduced. On top of

restricting the number of potential home server assignments

for each client, this prevents the concentration of clients on

an edge server and reduces the variance of |Cl| in Equation 7.

The number of clusters K is given in advance according to

the strength of locality and mobility of clients. For example,

in an application where publishers and subscribers are close

together, we set K larger to more finely divide the field.

Secondly, RELOC assigns publishers who have strong re-

lationships to the same edge server so that the number of

edge servers which handles a given topic is reduced. The

relationships among publishers are obtained by the following.

We prepare a list of publishers for each topic and the matrix

Z = {zm,m′ |cm, cm′ ∈ C}, where zm,m′ represents the

number of times clients cm and client cm′ published to the

same topic. Z is initialized as Z = 0. If cm and cm′ are

publishers to the same topic, zm,m′ is incremented. After the

preparation, RELOC obtains the set of publishers who have

the strongest relationship with each publisher by adapting the

matrix factorization described in [17] to Z.
Publishers in different clusters are not assigned to the same

server even if they have a strong relationship. Nevertheless,

publishers to a topic are likely to be close together. Besides,

the size of the clusters can be adjusted by changing the number

of clusters created. Thus, RELOC can distribute clients to edge

servers evenly, and keep the proximity between clients and

their home servers by virtue of the restriction given by cluster-

ing, without breaking the relationships between publishers. We

plan to determine the number of clusters to create according

to the application features in future work.
Finally, RELOC takes account of the current resource usage

of each edge server, which promotes cooperative management

of messages between edge servers. By this operation, edge

servers that are not heavily used are going to manage more

topics. The overall operation of RELOC is presented in

Algorithm 1.

Algorithm 1 RELOC: home server assignment to a client

Input: Client cm to whom RELOC assign home server; the

latest status of edge server sl, namely rl, d
H
l,1, dH

l,2, which

are defined as Equation 6, 7, 8, respectively; the number

of clusters K; the number of extracted clients M ′

Output: assigned home server’s index l
1: Divide field to K clusters.

2: Choose M ′ clients who have the strongest relation with

cm
3: C′ ← set of indexes of chosen clients

4: l ← index of a server with the smallest rl, which belong

to the same cluster as cm
5: for m′ in C′ do
6: if cm′ ’s home server belongs to the same cluster as cm’s

home server then
7: if rl = 0 and dH

l,1 = 0 then
8: l ← index of cm′ ’s home server

9: break
10: end if
11: end if
12: end for

1) locality conscious: In Line 1, the field with numerous

edge servers is divided into K clusters using the K-means

clustering algorithm.

2) relation conscious: From Line 2 to 8, except for Line

7, M ′ clients who have the strongest relationship with

cm is extracted based on matrix factorization technique.

Subscripts of extracted clients are stored in C′. A home

server l is temporarily selected from servers which belong

to the same cluster as cm, and with the smallest rl. If

extracted clients include a client who belongs to the same

cluster as cm, l is reset to index of the extracted user’s

home server.

3) Cooperation: Line 7 is the additional condition to reset

l. If resources on the extracted client’s home server are

exhausted (rl > 0 ∨ dH
l,1 > 0), l is not updated.

TABLE I
PARAMETERS FOR THE SIMULATIONS

Parameter Value Parameter value

L 100 dC 5 ms
A 160 MB B 100
β 1 γ 0.1
K 10 M ′ 100

TABLE II
CORRESPONDING M AND N TO REQUIREMENT RATIO (RR)

RR M N RR M N
0.07 384 142 0.52 1865 914
0.81 2 714 1 361 0.95 3 123 1 587
1.28 4 058 2 053

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to demonstrate the

performance of RELOC. We adopt a metric Y as follows:

Y =
1

N

N∑
i=1

Di, (9)

which is the average delay of the formulated cost defined as

Equation 1. We also prepare additional metrics to identify bot-

tlenecks, namely Y1, Y2, and Y3 which denote the average of

rl, standard deviation of |Cl|, and average of gm,l, respectively.

Y1 =
1

L

L∑
l=1

rl (10)

Y2 =

√√√√ 1

L− 1

L∑
l=1

(|Cl| − 1

L

L∑
l′=1

|Cl′ |)2 (11)

Y3 =
1

M

L∑
l=1

M∑
m=1,cm∈Cl

gm,l (12)

We compare the performance of RELOC with 4 assignment

methods, namely random assignment (RA), the nearest server

assignment (NS), location conscious assignment (LO), and re-

lation and location conscious assignment (RELO). RA assigns

home servers to clients randomly, while NS assigns the closest

server to clients, which is assumed in [14]. LO and RELO

enable analyzing the effect by each element of the proposed

method. LO is RELOC without relation consciousness and

cooperation, while RELO is RELOC without cooperation. A

list of parameters for the simulations is shown in Table I.

We obtain list of publishers from a real-world social network

dataset (user sns.txt) provided by Tencent Inc. [18]. We group

Followee-userid by Follower-userid and make the

arranged dataset, where each line includes a follower and

her/his followees. We extract N lines from the arranged dataset

and assign a topic to each line. Besides, we regard a follower

and followees in each line as a list of clients who can take a

role of publishers.

As preparation for the simulations, we distribute M clients

that appeared in the N lines extracted from the dataset in a

Fig. 2. Comparing average delivery delay Y of RA, NS, LO, RELO, and
RELOC

field of 10 km square field. We place the clients following

a Gaussian distribution with a standard deviation of 2 km

centered on a randomly chosen point in the field.

A home server is assigned to each client following the

various assignment methods, including RELOC. The strategy

X and dH
l is fixed at this point. The home server of each of

the M clients manages the topic to which the client publishes

messages. Each message processor prepared for a topic holds

1 MB of spooled messages. Therefore, A
ul

in Equation 6 is

calculated as the number of topics managed by edge server sl,
multiplied by 1 MB. At this point, the value of rl is fixed. The

status of an edge server sl, namely rl, d
H
l , and the strategy X

would be different depending on the method chosen to assign

home servers. Pi and Si are selected from clients in line i of

the arranged dataset.

After the above preparation, We conduct N notification

deliveries starting at i = 1 in the following steps: (1) cm ∈ Pi

publishes a message to its home server which manages the

target topic; (2) The message is processed with the 1 MB of

spooled messages and the notifications are generated; (3) pro-

duced notifications are delivered to the subscribers cm ∈ Si.

We conduct 5 trials for each data. In this simulation, we fixed

the size of the spooled messages and the value of rl, dH
l

remains constant. This assumes a situation where old messages

are expired to utilize the limited resource of edge servers.

Fig. 2 shows the average delivery delay Y against the

requirement ratio. The requirement ratio is defined as the ratio

of maximum storage capacity that would be used, to A · L,

which is the total size of the storage capacity on edge servers.

Corresponding M and N for each requirement ratio (RR) in

our simulations are presented in Table II. From Fig. 2, we

can observe that RELOC has the smallest delay to deliver

notifications to clients. Even when maximum storage capacity

that would be used is close to total size of storage capacity on

edge servers (i.e. requirement ratio is close to 1.0), RELOC

allocates topics on edge servers efficiently, and does not cause

so much resource exhaustion which gives a delay of more than

6 ms.

The effectiveness of social consciousness, locality con-

sciousness, and corporation in RELOC can be observed in

Fig. 3. Comparing the average of probability that a message processor managed by edge server sl is allocated on a cloud server (Y1), the standard deviation
of the number of assigned clients to edge server sl (Y2), and the average of geographical distance between cm and its home server sl (Y3) of RA, NS, LO,
RELO, and RELOC

Fig. 3. The effect of social consciousness is demonstrated by

the performance gains of RELOC and RELO over LO under

high requirement ratio in Fig. 3a. In Fig. 3b, we can observe

RELOC without corporation, (i.e. RELO), concentrates users

to several servers as the requirement ratio increases. Thus, the

effectiveness of cooperation is demonstrated. The advantage

of LO, RELO, and RELOC over RA in Fig. 3c demonstrates

the effectiveness of locality consciousness.

VI. CONCLUSION

In this paper, we presented a publish-process-subscribe

system that allows published messages to a topic to be

immediately processed by distributed message processors on

edge servers. We formulated the delay caused by excessive

edge server resource use by the message processors to find the

optimized allocation of message processors on edge servers.

Numerical experiments show that our heuristics constructed

with an analysis of the formulated optimization problem

give an efficient use of edge server resources, and reduce

the delay. Future work involves comparing results by the

optimal solution and heuristic solution, considering how to

determine K adequately in Algorithm 1 exploiting several

features of application users such as locality and mobility,

and investigating time complexity and execution frequency to

confirm that RELOC can be deployed to real environments.

ACKNOWLEDGEMENT

We would like to thank Patrick Finnerty for his precious

comments. This work was supported by JSPS KAKENHI

Grant Number JP18H03232, JP20K11841. This work is partly

carried out on StarBED which is provided by National Institute

of Information and Communications Technology (NICT).

REFERENCES

[1] A. Reznik, L. M. C. Murillo, Y. Fang, W. Featherstone, M. Filippou, F.
Fontes, F. Giust, Q, Huang, A. Li, C. Turyagyenda, D. Wehner and Z.
Zheng, “Cloud RAN and MEC: A perfect paring,” ETSI White Paper,
No. 23, 2018.

[2] S. Shaheen and R. Finson, “Intelligent transportation systems, ” Ency-
clopedia of Energy, 2013.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, “Mobile edge
computing a key technology towards 5G,” ETSI White paper, No. 11,
2015.

[4] V. Setty, G. Kreitz, G. Urdaneta, R. Vitenberg and M. van Steen,
“Maximizing the number of satisfied subscribers in pub/sub systems
under capacity constraints,” IEEE INFOCOM 2014 - IEEE Conference
on Computer Communications, 2014, pp. 2580-2588.

[5] N. Apolónia, S. Antaris, S. Girdzijauskas, G. Pallis and M. Dikaiakos,
“SELECT: A distributed publish/subscribe notification system for online
social networks,” 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, pp. 970-979.

[6] F. Zhang, B. Jin, W. Zhuo, Z. Wang and L. Zhang, “A content-based
publish/subscribe system for efficient event notification over vehicular ad
hoc networks,” 2012 9th International Conference on Ubiquitous Intel-
ligence and Computing and 9th International Conference on Autonomic
and Trusted Computing, 2012, pp. 64-71.

[7] B. Krishnamachari and K. Wright, “The publish-process-subscribe
paradigm for the internet of things,” USC ANRG Technical Report, 2017.

[8] L. Hou, L. Lei and K. Zheng, “Design on publish/subscribe message
dissemination for vehicular networks with mobile edge computing,”
2017 IEEE Globecom Workshops (GC Wkshps), 2017, pp. 1-6.

[9] S. Khare et al., “Scalable edge computing for low latency data dissem-
ination in topic-based publish/subscribe,” 2018 IEEE/ACM Symposium
on Edge Computing (SEC), 2018, pp. 214-227.

[10] Q. Li, W. Shi, Y. Xiao, X. Ge and A. Pandharipande, “Content size-aware
edge caching: A size-weighted popularity-based approach,” 2018 IEEE
Global Communications Conference (GLOBECOM), 2018, pp. 206-212.

[11] T. Hou, G. Feng, S. Qin and W. Jiang, “Proactive content caching by
exploiting transfer learning for mobile edge computing,” GLOBECOM
2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-6.

[12] V. A. Siris, X. Vasilakos and G. C. Polyzos, “Efficient proactive caching
for supporting seamless mobility,” in Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, 2014, pp. 1-6.

[13] L. Hou, L. Lei, K. Zheng and X. Wang, “A Q -learning-based proactive
caching strategy for non-safety related services in vehicular networks,”
in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4512-4520, 2019.

[14] T. Nagato, T. Tsutano, T. Kamada, Y. Takaki and C. Ohta, “Distributed
key-value storage for edge computing and its explicit data distribution
method,” in IEICE Transactions on Communications, Vol. E103.B, No.
1, pp. 20-31, 2020.

[15] T. Tanaka, T. Kamada, and C. Ohta, “Distributed topic management in
publish-process-subscribe systems on edge-servers for real-time notifi-
cation service,” IEICE Communications Express, vol. advpub, 2020.

[16] M. Lewis, G. Kochenberger and B. Alidaee, “A new modeling and
solution approach for the set-partitioning problem,” in Computers &
Operations Research, Vol.35, No. 3, pp.807-813, 2008.

[17] R. Sebastian, Y. Limin, M. Andrew and M. Benjamin M., “Rela-
tion extraction with matrix factorization and universal schemas,” in
Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2013, pp.74-84.

[18] Tencento Inc., “Predict which users (or information sources) one user
might foloow in Tencent Weibo,” Kaggle KDD Cup 2012 Track 1, 2012.
[Online] Available : https://www.kaggle.com/c/kddcup2012-track1

