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Abstract 

 

An exact and explicit frequency domain solution is derived for 

the problem of coupled exponential transmission lines 

(CETL) excited by both external electromagnetic plane wave 

and the terminal sources. The solutions obtained are exact 

and are applicable to all arbitrarily loaded, lossless, 

inhomogeneous and dispersive coupled exponential 

transmission lines. The problem is formulated in some matrix 

equations and the voltages and currents of the lines are 

obtained along their length. 

 

1. INTRODUCTION 

 

Current advances in technology enables the use of increased 

speed in devices, which require much higher frequency 

bandwidth, in the present microwave integrated circuits 

(MICs). However, with increased frequency, more emphasis 

is now placed upon greater concentration of active devises in 

the ICs to even smaller volumes, which results in shorter 

interconnects and hence increased density. An important 

aspect of electromagnetic interference (EMI) is the 

determination of electromagnetic coupling in transmission 

lines (TL’s) and the response of the lines to an incident 

electromagnetic plane wave. The response of several kinds of 

single or coupled TL’s to external electromagnetic fields has 

been studied by some authors [1]-[7]. The method of these 

studies is based on subdividing total electric and magnetic 

fields into a primary (in the absence of metal conductors) and 

a secondary part (TEM or quasi-TEM mode). The primary 

part is modeled by distributed voltage and current forcing 

sources and the secondary part is modeled by transmission 

lines equations. On the other hand, there are many occasions 

where the transmission lines are nonuniform, e.g. connection 

of indoor wires with power lines, wiring of electronic 

equipments, impedance matching [8], analog signal 

processing [9], VLSI interconnect [10], etc. The differential 

equations describing these structures have non-constant 

coefficients because the per-unit-length matrices vary along 

the lines. The most straightforward method to analyze 

arbitrary coupled nonuniform TL’s is subdividing them into 

many short uniform sections [6], [11]. There are exact and 

analytic methods only for a few special cases such as 

binomial [12], power law [13], exponential power law [14] 

and hermite [15] variations. 

Most of the works discuss about excited coupled uniform 

TL’s [1]-[7] or non-excited nonuniform TL’s [8]-[15]. In this 

paper, we derive an analytic solution for the excited coupled 

exponential TL’s (CETL’s) by both the incident wave and the 

terminal sources. The solutions obtained are exact and are 

applicable to all arbitrarily loaded, lossless, inhomogeneous 

and dispersive CETL’s. The effect of distributed voltage and 

current forcing sources and also the source voltages to the 

voltages and currents of the lines are studied using an 

example. 

 

2. ANALYTIC SOLUTION OF CETLS 

 

Solving the equations of externally excited coupled 

nonuniform transmission lines analytically is a very hard 

problem. However, these equations will be solved analytically 

without approximation for the special case of externally 

excited CETLs, in this section. Fig. 1 shows a typical CETL 

consisting of N lines with length of d and with arbitrary 

terminal loads of ZS,n(ω) and ZL,n(ω), in which n=1, 2, …, N. 

The structure is excited by both source voltages VS,n(ω), 

where n=1, 2, …, N in the terminals, and an external 

electromagnetic plane wave. 

In general, the partial differential equations describing 

lossless and dispersive externally excited coupled nonuniform 

transmission lines in the angular frequency of ω are given by 

[1]-[7] 

 

 

 
 

Fig. 1. A typical coupled exponential transmission lines with length of d and 

excited by source voltages and an electromagnetic plane wave 
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in which V and I are N××1 voltage and current vectors, 

respectively. The parameter kz is the phase constant of the 

incident wave along the lines. Also, VF and IF are N××1 

distributed forcing voltage and current vectors, respectively, 

which are related to the specifications of the incident wave 

(the frequency, the angle of incidence and the polarization) 

and the exposed structure [1]-[7]. Moreover, L and C are 

frequency dependent per-unit-length inductance and 

capacitance matrices of the coupled transmission lines, 

written as follows 

)()(),( 0 zfz ωω LL =     (3) 

)()(),( 0 zgz ωω CC =     (4) 

In addition to (1)-(2), there are two following terminal 

conditions for coupled nonuniform transmission lines 
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where ZS and ZL are diagonal source and load matrices, 

respectively. The differential equations in (1) can be 

decoupled using the definition of modal voltage and current 

vectors as 
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where TV and TI are transfer matrices determined from 

inductance and capacitance matrices [6]. Setting (7)-(8) in 

(1)-(2), the decoupled equations are obtained as 
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in which m
0L  and 

m
0C  are diagonal inductance and 

capacitance matrices derived from the following matrix 

equations [6]. 

m
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Combining (9) and (10), gives the following differential 

equation for modal voltage vector 
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Now, we consider the following functions for exponentially 

varied coupled lines 
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Using (14)-(15) in (13), gives us 
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in which 
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is a diagonal matrix. It is simple to show that the voltage 

vector satisfying (16) is as follows 
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in which K1 and K2 are unknown column vectors of 

coefficients and also 
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In (19)-(21), I is an N by N identity matrix. Also, the current 

vector is determined using (1), (3), (14) and (18), as follows 
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Setting (18) and (22) in the terminal conditions (5)-(6), one 

gets to the following set of equations to find the unknown 

vectors K1 and K2 

)()()( 212211 ωωω FFS IbVbVKaKa ++=+  (23) 
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where the following eight coefficients have been defined 
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Finally, the unknown coefficients K1 and K2 are determined 

using (23)-(24) as follows 
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It is necessary to mention that, the relations (23)-(24) have to 

be solved for each excitation frequency of the incident wave 

and the terminal sources, separately. 

 

3. EXAMPLES AND RESULTS 

 

In this section, a CETL is analyzed using the obtained 

analytical formulas. Consider a lossless coupled microstrip 

structure with N = 2 strips. The substrate permittivity is εr = 

10, the width of the strips and the gap between them are equal 

to the thickness of the substrate. This inhomogeneous 

structure has the following exponential the per-unit-length 

matrices. 
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Assume that d = 20 cm, f = 1.0 GHz, )2/( ck z ω= , where c 

is the velocity of the light, ZS,1 = ZS,2 = 50 Ω, ZL,1 = ZL,2 = 50 

Ω. Figures 2 shows the amplitude of voltages of two lines for 

q = 0 and q = 1, assuming VS,1 = 1 V, VS,2 = VF,1 = VF,2 = IF,1 = 

IF,2 = 0. Figures 3 shows the amplitude of voltages of two 

lines for q = 0 and q = 1, assuming VF,1 = 1 V, VS,1 = VS,2 = VF,2 

= IF,1 = IF,2 = 0. Also, figures 4 shows the amplitude of 

voltages of two lines for q = 0 and q = 1, assuming IF,1 = 1 A, 

VS,1 = VS,2 = VF,1 = VF,2 = IF,2 = 0. In fact, Figs. 2-4 show the 

effects of source voltage and distributed forcing voltage and 

current sources, separately. Of course, all of these sources are 

simultaneously existed, in a real problem. The time consumed 

for the above example was only a few seconds using a 

Pentium-4 PC and MATLAB program. 

 

 
 

Fig. 2. The amplitude of the voltage of CETL for two cases of q=0 and q=1, 

assuming VS,1=1 V, VS,2=VF,1=VF,2=IF,1=IF,2=0 

 

 

 
 

Fig. 3. The amplitude of the voltage of CETL for two cases of q=0 and q=1, 

assuming VF,1=1 V, VS,1=VS,2=VF,2=IF,1=IF,2=0 
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Fig. 4. The amplitude of the voltage of CETL for two cases of q=0 and q=1, 

assuming IF,1=1 A, VS,1=VS,2=VF,1=VF,2=IF,2=0 

 

4. CONCLUSIONS 

 

An analytic solution is derived for externally and internally 

excited coupled exponential transmission lines problem in the 

frequency domain. The solutions obtained are exact and are 

applicable to all arbitrarily loaded, lossless, inhomogeneous 

and dispersive coupled exponential transmission lines. The 

problem is formulated in some matrix equations and the 

voltages and currents of the lines are obtained along their 

length. The effect of distributed voltage and current forcing 

sources and also the source voltages to the voltages and 

currents of the lines are studied using an example. 
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