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I. INTRODUCTION

Numerical analysis has become an important technique for the modeling of electromagnetic field.
However, there still exist many restrictive factors that make numerical analysis difficult to apply to prac-
tical problems. The finite-difference time-domain (FDTD) technique [1] and the transmission line matrix
method [2] have been applied to many problems and proven to be promising techniques by virtue of their
versatility. However for modeling electrically large structures, they are often restricted by memory short-
age like other space-discretization methods. The multi-resolution time-domain (MRTD) method based
on the Battle-Lemarié wavelets [3] has a highly linear numerical dispersion property. It has been demon-
strated that, with this technique, space discretization with only a few cells per wavelength gives accurate
results, leading to a reduction of both memory requirement and computation time.

Recently, the wavelet-Galerkin scheme based on Daubechies’ compactly supported wavelet with two
vanishing moments (D2) was proposed by Cheong et.al. [4]. Although the numerical dispersion of this
technique is larger than that of the MRTD method, it has advantages over MRTD in that the Daubechies’
scaling function has compact support, and the stencil size or the number of coefficients in the time-
evolution equations is kept to a minimum. Cheong’s method also adopts the so-called “shifted interpola-
tion property”, which enables local field sampling in spite of the asymmetry of the Daubechies’ scaling
function and a support larger than unity; with this property, the evaluation of the constitutive equations
can be omitted even for inhomogeneous media.

The authors have already extended the method to the use of Daubechies’ scaling functions with three
and four vanishing moments (denoted as D3 and D4, respectively) [5]. By using basis functions of higher
regularity and minimum support, better accuracy and minimum stencil sizes can be expected, resulting
in an optimally efficient algorithm.

In this paper, a three-dimensional formulation of the wavelet-Galerkin scheme is presented with an
implementation of uniaxial perfectly matched layer (UPML) absorbing boundary conditions (ABC) [6].
The accuracy of the present method is first verified, and then it is applied to the analysis of an electrically-
large optical waveguide, which is too expensive to solve with the conventional FDTD method, and the
advantage of the present method is demonstrated. This is, to the best of authors’ knowledge, the first
attempt to apply the wavelet based approach to the full-wave time-domain analysis of electrically large
inhomogeneous structures such as optical waveguides.

II. THEORY

Maxwell’s equations for the three-dimensional lossless case
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are discretized on the standard Yee grid [1]. The field values are first expanded in Daubechies’ compactly
supported scaling functions � [7] as
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and the other field components Ey; Ez andH are expanded analogously, where
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is the well known Haar scaling function and
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is the translated scaling function with M1 =

R +1
�1

x�(x)dx being the first-order moment of the scal-
ing function; M1 = 0:6339743121 for D2, and M1 = 0:1005392384 for D4. Daubechies’ compactly
supported scaling functions approximately satisfy the so-called “shifted interpolation property”

�(k +M1) = �k;0 (6)

for k integer, where � is the Kronecker delta function. This property yields a simple algorithm for the
inhomogeneous problems through the local sampling of the field values [4].

The standard Galerkin’s procedure leads to a system of updating equations similar to the S-MRTD
method [3]. The UPML formulation in [6] yields straightforwardly the standard two-step updating pro-
cedure for the UPML medium in the wavelet-Galerkin scheme. The first step is to update the electric
flux density D fromH
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where Ls denotes the effective support size of the basis function, that is, the stencil size or the number of
connection coefficients per side included in the update equations. The second step is to updateE fromD
locally without including the neighboring E orD due to the shifted interpolation property of the scaling
functions
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The update equations for the other field components Ey; Ez;Dy and Dz are obtained by permutating
x; y and z, and the equations for the magnetic flux density B and H is obtained similarly. The coeffi-
cients a(l) are obtained by numerically evaluating the inner products between the scaling functions and
their derivatives in Fourier domain [5]; for D2, a(l; l = 0; 1; 2) = f1:2291666667; �0:0937500000;
0:0104166667g and for D4, a(l; l = 0; � � � ; 6) = f1:3110340773; �0:1560100710; 0:0419957460;
�0:0086543236; 0:0008308695; 0:0000108999; �0:0000000041g.

The UPML material parameters are chosen to be ��(�=x;y;z) = 0 for the inner computation region,
and ��(�=x;y;z) > 0 with fourth-order polynomial scaling (m = 4) for the UPML region. The maximum
value of � at the end of the UPML region is chosen to be �max = (m + 1)=(150��

p
�
r
) [6], where �

is the cell dimension perpendicular to the UPML interface to the regular region. The other parameter is
��(�=x;y;z) = 1 over the whole region in this paper.

The UPML region is backed by a perfect electric conductor wall implemented using the mirror prin-
ciple. One might wonder about the accuracy of the mirror image because of the asymmetry of the basis
functions. However, by virtue of the shifted interpolation property, the basis functions have unity value
at the origin of the function and zero values at other integer points, thus the mirror image is accurate
at integer points. Of course, the basis functions take non-zero asymmetric values at non-integer points;
nevertheless, this does not affect the numerical procedure.



III. VALIDATION

The resonator structures shown in Fig. 1 were analyzed with the wavelet-Galerkin method based on
D2 and D4 scaling functions as well as the standard FDTD method. The stability factor for D2 and D4

was chosen to be 0:2 of the corresponding FDTD Courant limit, while for FDTD, it was the maximum
Courant limit to obtain the best accuracy. The final calculation time is 2000 in the normalized unit. The
computations were conducted on a Sun Ultra-Spark workstation with 300MHz clock rate and 256MB
memory. The code is not optimized, however, the results give a good estimate of the required computer
resources. The results are summarized in Table I.
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Fig. 1. Cavity resonators. Numbers denote normalized dimensions of the structures.

TABLE I
DOMINANT RESONANT FREQUENCIES Fr OF THE RESONATORS. THE THEORETICAL VALUES OF THE

NORMALIZED RESONANT FREQUENCIES OF THE RESONATORS ARE 0.075116 FOR (A) AND 0.05221 FOR

(B). Nmax DENOTES THE NUMBER OF TIME STEPS.

Resonator No. of Yee cells Conditions FDTD D2 (Ls = 3) D4 (Ls = 5)

Nmax 3464 17320 17320

�t 0.57735 0.11547 0.11547

12 x 6 x 8 Fr 0.07495 0.07533 0.07535

error (%) -0.23 +0.28 +0.30

a
CPU time (s) 7 45 68

Nmax | 5605 5605

�t | 0.35678 0.35678

3 x 2 x 3 Fr | 0.07556 0.07526

error (%) | +0.59 +0.19

CPU time (s) | 3 3

Nmax 6708 33541 33541

�t 0.29814 0.059628 0.059628

12 x 6 x 8 Fr 0.05230 0.05282 0.05282

error (%) +0.17 +1.17 +1.17

b
CPU time (s) 12 85 130

Nmax | 21665 21665

�t | 0.092312 0.092312

12 x 2 x 3 Fr | 0.05418 0.05440

error (%) | +3.77 4.19

CPU time (s) | 8 10

For the empty cavity (a), the present scheme gives results comparable to FDTD. It was also found that
D4 gives better accuracy than D2. However, for the inhomogeneous structure (b), the present scheme is
less accurate than FDTD. When the inhomogeneity of the structure is smaller than the wavelength, the
accuracy of the present scheme is not sufficient. We will show in the following example that the present
scheme gives better accuracy than FDTD when the structure is inhomogeneous but electrically larger
than the wavelength.

IV. ANALYSIS OF AN OPTICAL WAVEGUIDE STRUCTURE

Finally the present method was applied to an optical rib waveguide shown in Fig. 2 (a), which was
previously analyzed by many authors with various numerical techniques, mostly with beam propagation
methods [8] to keep the numerical analysis effort within reasonable limits.

The waveguide was analyzed with the D4-based scheme as well as the standard FDTD using three
different discretization levels: a coarse-grid (�x��y ��z = 0:1 � 0:1 � 0:1�m

3); an intermediate-



grid (0:1�0:1�0:05�m3); and a fine-grid (0:05�0:05�0:025�m3). The analysis region was completely
surrounded by five-layer UPML-ABCs.

Figure 2 (a) also demonstrates the Ey field propagating in the waveguide analyzed with the D4 scheme
using the intermediate-gird, and Fig. 2 (b) shows the comparison of the resulting time series data picked
up at 1.6 �m from the source point.

Note that results of D4 with the intermediate-grid and of FDTD with the fine-grid agree well compared
to the other results for the coarser girds that show highly dispersive waveforms. Although the CPU time
was about 70 minutes for both D4-intermediate-grid and FDTD-fine-gird, the executable sizes were 15
MB for D4-intermediate-grid and 55 MB for FDTD-fine-gird. The executable size will be further reduced
once the code is optimized. The details of the analysis will be presented at the conference.
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Fig. 2. (a) A straight optical rib waveguide and a snapshot of the Ey field distribution. The dimensions are in �m.
n denotes the refractive indices. The wave travels from left to right. (b) Comparison of the time series data.

V. CONCLUSIONS

The three-dimensional time-domain wavelet-Galerkin method based on Daubechies’ compactly sup-
ported scaling functions with three and four vanishing wavelet moments has been presented together
with the implementation of the uniaxial-medium PML ABCs.

The proposed method was verified by analyzing resonant cavities, and then applied to an electrically
large optical waveguide problem. The minimum support of Daubechies’ scaling functions yields an
effective algorithm, and the highly linear numerical dispersion property reduces the number of cells re-
quired in the analysis, thus reducing the full-wave analysis of electrically large inhomogeneous structures
to a size that can be handled by workstations or personal computers.
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