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1- Introduction
Different approaches propose the introduction of dispersive models to the FDTD method. They

are generally divided into three categories: Z-transform method, ADE method (Equation Differential
Auxiliary) and RC method (Convolution Recursive). The three methods offer now second-order
precision. This is true particularly for the PLRC [1] and JEC [2] techniques, which belong to the RC
method. This latest is very efficient for its computation time and memory occupation. Moreover its
extension to multiple-pole susceptibility function is straigthforward. On the other hand, open
dispersive media can be simulated in the FDTD method thanks to the PML absorber. Fan & Liu [3]
have described an approach, which is infortunately depending on dispersive model (Debye, Drude,
Lorentz). Teixera & Chew [4] have proposed a general formulation using the PLRC technique, but the
algorithm becomes complex and the split components for E, H, D and B, and the recursive
accumulator, raise drastically the computation time and the memory size.

What we propose is a simple and general approach based on the complex coordinate stretched
PML theory [5] that are combined with the JEC technique (J-E Convolution) in 3D-space to simulate
opened-space linear dispersive media. The constitutive parameters of the PML are applied uniquely on
the D-B induction vectors. In consequence the influence of the PML absorber is independent of the
constitutive parameters of the dispersive or conductive media. As a result, the components of the E-H
field vectors are unsplit and the algorithm treating the different media in the inner region is preserved
in the PML region. In the following section, the JEC technique is summarizing for a general dispersive
medium including Debye and Lorentz models. The third section develops the new general PML-JEC
absorber for dispersive media. Then an effective algorithm is proposed to calculate the split
components of D and B only in the PML region. To illustrate the effectiveness of the proposed
algorithm, numerical result with Lorentz and Debye dispersive media is given in the last section.

2- The JEC technique
The JEC technique as proposed in [2] is generalised here and presented concisely by considering

the general dispersive model in the time domain:
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The coefficients A1, B1 and α1 are real and constant. The equivalent Debye model is obtained by
setting ω1=0 and B1=0 and the equivalent Lorentz model by setting A1=0. To update χ(t) in a
corresponding discrete recursive form, the general relation (1) can be written in the following complex
form:
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The complex permittivity is introduced to the Maxwell-Faraday equation in the time domain:
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Using (2) to derive D(t), one can show that (3) becomes:
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To perform the convolution operation, a discrete rectangular rule summation is applied to (5), A
complex expression is then derived with a recursive form and a second-order precision for each J
component [2]. Here the recursive form becomes:
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The update of E components is obtained from (4):
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The algorithm update is explicit and its extension to multiple-pole dispersion model is straightforward.
We should mention that an added storage is required for each component of J to treat (6). Further, if
the model is Debye type, the equation (6) becomes real instead of complex.

3- Generalised unsplit E-H PML for dispersive media
The general theory of PML ABC is deduced from the complex coordinate stretching [5]. Some

degrees of freedom in the Maxwell’s equations are added to achieve the reflectionless absorption of
the wave inside the PML region. In the frequency domain, the modified Maxwell’s equations in the
complex coordinate stretching PML formulation with the convention eiωt are:
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The second equation takes into account the dispersive media as given in (4) and (5). 
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The sl are frequency dependent complex stretching variable. The real variables al and Ωl are functions
of the PML space profile and are introduced to attenuate without reflection the evanescent and
propagating waves respectively. To well separate the influence of the variables sl from the different
media, a vector D1 is introduced such as:
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Now, before to transpose equations in the time domain, D1 and B are split in three components (D1sx+
D1sy+D1sz and Bsx+Bsy+Bsz respectively) to facilitate manipulation and each component is defined from
(8), (9) and (11) in the time domain as Bsz and D1sz:
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By circular permutation, the other components are deduced. From (10), a new time domain equation is
obtained:
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Equations (12) and (13) can be written easily in the discrete space. For example, the update of split
components Byz, D1yz and unsplit components Ey is given:





 ∆∆⋅−⋅= −+ zEbbBabB

n
xz2

1
n

yzz2

1
n

yz
 ; 
















∆∆⋅+⋅=

+
− zHbdDadD 2

1
n

xz
1n

yz1z
n

yz1
(14-a)















−




 −−+∆+=

++++ 2

1
n

y
n
yz1

n
yx1

1n
yz1

1n
yx1y

n
yy

1n
y

JDDDDtbeEaeE (14-b)

abz, adz, bbz and bdz are coefficients depending on the variables az and Ωz. The PML algorithm with
the update of the D1-B components (14-a) is clearly independent of the media (with or without
electrical losses). Coupled with the JEC technique, The PMLs can absorb outgoing wave from any
Debye or Lorentz dispersive media with one or multiple poles. This original algorithm consists to
update 12 subcomponents for D1 and B and 6 components for E and H. We will show in the next
section that the number of the D1-B subcomponent update can be further reduced. Noting that the
components of B are not necessary except if a dispersive magnetic medium is present. However, the
use of B avoids the split components of H. The magnetic media are not considered in this paper but
the JEC technique can be applied to them with a magnetic model similar to (1).

4- Efficient PML algorithm
Enhancements can be introduced to above algorithm to reduce the number of subcomponent

update for D1 and B in considering that the absorption contribution of each component sl operates
separately from the others. In addition the absorption contribution of sz is limited to the xoy (inf and
sup) PML regions including corner and edge zones (fig.1). Same thing is true for the variable sx

associated to the yoz PML region and the variable sy associated to the zox PML region. So, for each
PML region, only 4 split components of D1 and B are useful for absorption. For example, with xoy
PML region, only the components D1xz, D1yz, Bxz and Byz are needed for the absorption contribution of
sz. Hence, with the treatment of all 6 PML regions, we obtain automatically the update of 12 D1-B split
components in the PML corner zones (intersection between three regions) and the update of 8 D1-B
split components in the PML edge zones (intersection between two regions). So the algorithm can be
performed as following:

a- Update E components everywhere even in the PML region with classical algorithm (included
dispersive media with current density J) as (7). For Example:
  Ey(i,j,k) = aey(i,j,k)*Ey(i,j,k)+ bey(i,j,k)*(∆Hx(i,j,k)*d_dz(k) -(∆Hz(i,j,k)* d_dx(i) -Jy)
where d_dz(k) = 1/∆z and d_dx(i) = 1/∆x if index k or i is in the inner region else zero if index k
or i is in the PML region.

b- Update D1 components as (14-a) and add them to E components (only 4 D1-B split components
in each PML region). For example in the xoy PML region:
  D1yz(i,j,k) = adz(k)* D1yz prev(i,j,k)+ bdz(k)*∆Hx(i,j,k)
  Ey(i,j,k) = Ey(i,j,k)+ bey(i,j,k)*∆t*(Dyz(i,j,k)-Dyz prev(i,j,k))
The parameter ∆t can be suppressed by including it in bdz(k) and avoiding one supplementary
operation. Dyz prev is the Dyz  component of the previous time step and it must be stored in a
temporary variable.

c- Update H components similarly to (a)
d- Update B components and add them to H components similarly to (b)

Added memory cost of the PML is reduced to minimum with 4 storages for each PML region. Notice
that the dispersive or conductive media in the PML do not add supplementary storage.

5- Validation
The PML-JEC algorithm is validated successfully with Lorentz, Drude and Debye dispersive

media in 3D-space. Relative error due to PML termination with Lorentz and Debye dispersive media
is presented here. In both cases, the reference is calculated on 25 processors with a large domain
(235*235*130 cells) terminated by 16-cell PML absorber. The first case is a dipole radiating above a
2-pole Lorentz medium that penetrates in the PML (fig.2-a) with 6 observation points placed near the
PML absorber. Relative error (fig 2-b) is always less than –60dB. The second case is a plane wave
with 30° incident angle (fig.3-a) penetrating in a 2-pole Debye medium in which a cylindrical metal is
buried. Error relative from two observation points placed near PML Corners is also less than –55dB.



6- Conclusion
A general and efficient PML-JEC absorber is described. The E-H components are unsplit so the

algorithm for the dispersive media can be applied in the PML region without modification. Wave
Absorption inside each 6 PML region is accomplished due to only 4 added split component of D1 and
B. Simple algorithm is derived and it should mention that the new PML do not add complex code for
the data parallelism and no more communications between the processes are necessary.
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