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1. Introduction

As an efficient absorbing boundary condition for the FDTD method, PML(Perfectly
Matched Layer) has been proposed by Berenger[l] and contributed to the improvement
of accuracy and reliability of FDTD in the open radiation problem. Berenger’s PML has
been devised for the case in which the analysis region is free space. The usual absorbing
boundary condition (ABC), such as the Mur-ABC [2] and the Higdon-ABC [3]. is invalid
when the analysis region is filled with dispersive and anisotropic medium, such as the
magnetoplasma. Recently, it has been demonstrated that the PML is applicable for lossy
medium|[4], dispersive medium [5], anisotropic medium [6]. However, the 3-D analysis for
the medium which is both dispersive and anisotropic has not been carried out.

In this paper, a PML-based absorbing boundary condition for the dispersive and anisotropic
medium is proposed. While Berenger deduced PML which is matched to the impedance of
free space, we derive dispersive and anisotropic PML which is matched to the impedance of
the uniaxially anisotropic medium. In order to demonstrate the validity of the proposed
boundary condition, numerical results for dispersive and anisotropic medium including
some type of dispersion in tensor permittivity are presented.

2. Formulation
In the dispersive and anisotropic PML medium, Maxwell’s equation is devided into the
12 partial differential equation as follows.
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where (0,00,00, 0%, 0}, 0%) are the electric conductivity and the magnetic conductivity

to absorb the plane wave composed of electric flux density D and magnetic field H,
respectively. D, H are splitted as follows.
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Relations between D and E are given by
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Next, a plane wave shown Fig.1 is considered. The field components for D and H are
given by
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where &, 1, are wave numbers correspond to x,y, z, respectively. Substituting eq.(4)

into eq.(1), and imposing following matching conditions
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the intrisic impedance Z¥ = D, /Hy becomes the same to the analysis region.

3. Discretization for FDTD

The leap frog calculation is performed as E = H = D = (E) in turn. The dis-
cretization for E = HO H = D is the same to the normal FDTD calculation. For
D = (E) procedure, the relation D = ¢¢¢ - E in frequency domain is transformed into
time domain using Fourier transform because the medium is dispersive. As the method
for evaluate E from D, the auxialiary differential equation (ADE) method [7], and the
recursive convolution (RC) method [8] are applicable and the ADE method is adopted in
this report. The procedure of the derivation of discretized equation by the ADE method
is omitted.

4. Numerical results In order to demonstrate the validity of the proposed boundary
condition, numerical calculation for the dispersive and uniaxially anisotropic medium
including Debye and Lorentz types of dispersion given by
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is performed, where &, and e, are permittivity at w = 0, w — o0, respectively, and
wo is the resonance angular frequency. ¢ is the dumping coefficient. Table 1 shows the
parameters of the tensor permittivity.

Fig.2 shows the model for the calculation, where an electric dipole generating FE, is
¢

located at the center of analysis region and the exciting pulse is p(t) = cos®(%), where

A = 0.5bns. Each cell size is 5.45cm, number of cells are 83 x 83 x 83, and the time step At



is 0.1ns. The PML thickness is 16 cells. Fig.3 shows another model to obtain a reference
solution, where a large analysis region {2 of 191 x 191 x 191 cells surrounded by a perfectly
conducting boundary is used. Fig.4 shows the time response of the electric field of the
model shown in Fig.2 in the case with and without the PML. It can be pointed out that
the numerical results using the proposed PML converge rapidly. Fig.5 shows the local
error defined by
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where EMAX is maximum value and E¥ is the reference solution obtained by using the
model of Fig.3. The local error is less than -80dB and the validity of the proposed PML
is demonstrated.

4. Conclusion PML-based absorbing boundary condition for dispersive and anisotropic
medium has been proposed. Numerical results have shown that the proposed absorbing
boundary condition can be matched the impedance of uniaxially anisotropic medium
composed by Debye and Lorentz type dispersion.
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Table 1: Parameters of tensor permittivity

£s | €00 | fo[MHz] )
&4 (Lorentz) 4 2 300 | 100 x 10°
&4y (Lorentz) 6 4 700 | 350 x 10°
£..(Debye) 10 | 2 200




Figure 1: A plane wave in dispersive and

anisotropic PML medium.
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Figure 2: Model for calculation.

y Q
Z(LE—» X E
Observation point
E EZ. L ] 5

54 | Source point | 54
"""""""" 190

PEC

Figure 3: Large model to obtain reference

solution.
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Figure 4: Time response at the interface.
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