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1 Introduction

Finite-Difference Time-Domain (FDTD) method [1], one of the most flexible tools to analyze
electromagnetic fields, is the application result of the mid-point method to Maxwell’s equations.
Since Maxwell’s equations are first-order simultaneous differential equations, the application of
the mid-point method causes a half cell and a half time-step distances between electric and
magnetic filed components. The distance does not matter by Yee’s spatial arrangement of field
components [1], and this considerable arrangement causes the widespread use of his algorithm.
However, it would be more adequate if any approximation does not derive such distances. Ac-
tually it is natural to evaluate all the components at the same discrete points.

Besides, Yee’s FDTD method requires large number of computational resources (computer
memories) and long computation time. One of the reasons may be the number of computed
components. Since Yee’s method is a leapfrog algorithm which computes electric and magnetic
field components alternatively, each component requires the other components to update itself.
For example, we have to evaluate the components Ez,Hx and Hy to analyze two-dimensional
(2-D) field of TM-mode even if we want to know only Ez. It would also be helpful if we can
develop an algorithm to update each component irrespectively to other components. It enables
shorter computation time.

This paper investigates an efficient algorithm of 2-D FDTD method by applying the mid-
point method to wave equations. The proposed algorithm is called “WE-FDTD method” abbre-
viated from “Wave Equation-based FDTD method” to be distinguished with the conventional
Yee’s FDTD method. Throughout this paper, the 2-D TM-mode case is studied in detail.
However, similar approach can easily be applied to 2-D TE-mode case.

2 Preliminaries

Maxwell’s equations can be written as the following three simultaneous differential equations in
2-D TM-mode case:

∂Ez

∂t
=
1
ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
,

∂Hx

∂t
=
1
µ0

∂Ez

∂y
,

∂Hy

∂t
= − 1

µ0

∂Ez

∂x
, (1)

where Ez, Hx and Hy denote the z-component of the electric field, the x- and y-component of
the magnetic field, respectively. Besides, ε0 and µ0 respectively denote the permittivity and the
permeability of a vacuum. The direct application of the 1st-order midpoint method to the above
equations yields the Yee’s method [1].

A wave equation which corresponds to the component Ez in 2-D TM-mode case is given as
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where c0 := 1/
√

ε0µ0 denotes the speed of light in a vacuum. The same equation holds for the
magnetic components Hx and Hy. Also, the 2-D TE-mode case can be derived for Hz, Ex and
Ey.
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3 Proposed Algorithm

Applying the 2nd-order midpoint method

∂2f

∂x2
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f(xi+1)− 2f(xi) + f(xi−1)
(∆x)2

, ∆x = xi+1 − xi,

to (2), we have the following finite-difference equation:
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where En
z (i, j) denotes the component Ez at the point (i∆x, j∆y) when t = n∆t. Besides, the

stability condition of (3) can be written as
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Introducing the parameter a which satisfy
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the proposed algorithm (3) can be rewritten as
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From (3) and (4), we see that the component En+1
z (i, j) can be computed from the previous

values at the same point: En
z (i, j), En−1

z (i, j), and the previous values at the surrounding points:
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thus we can recursively update Ez without computing the magnetic components Hx and Hy. It
leads the smaller memories to be required in computer programs.

The equations (3) and (4) cannot correspond to conditions for magnetic components, however
a slight modification enables the equations to correspond to such conditions. It is studied with
an actual model in Section 4.

4 Simulation

4.1 Analysis of an Example 2-D Field

In this section, we analyze an example 2-D field to see if the proposed algorithm really works.
The analyzed field is illustrated in Fig. 1, and the specifications of this simulation is summarized
as Table 1. It is mentioned here that the proposed algorithm can employ the Mur’s 2nd-order
boundary condition [2], similarly as the Yee’s method could. The incident voltage is given by

En
z = e−α(n−β)2 , (β = 32.0, α = 4β−2),

also it is illustrated in Fig. 2.
In this simulation, an electric and a magnetic walls are placed in the field as drawn in Fig.

1. The magnetic condition Hy = 0 should be replaced into a condition of Ez to correspond
to the proposed algorithm. The condition Hy = 0 is first reduced into the partial difference:
∂Hy/∂t = 0, and then it is replaced by ∂Ez/∂x = 0 from the last equation of (1). Based on the
above discussion and the parabolic approximation, the components Ez inside the magnetic wall
are updated by
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On the other hand, the components Ez at the right side of the magnetic wall are updated by
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without using the components inside the magnetic wall. This equation is also based on the
parabolic approximation.

Figure 3 and 4 illustrate the behavior of Ez in the cases t = 30∆t and 50∆t, respectively.
These figures show that the proposed method really works. The results by the proposed method
are quite similar but slightly different to those by Yee’s method. This is because that Yee’s
method cannot follow the original magnetic condition. The magnetic wall has to be located
with a half cell distance from the original place in Yee’s method.

4.2 Comparison of the Computing Process

Comparing the Yee’s and the proposed methods with respect to the computer memories in the
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y , where N denotes the number of cells in the analyzed field (for example, N =
40×40 = 1600 in the case of Fig. 1). Note that the En−1

z components are preserved to compute
boundary elements. On the other hand, the proposed method requires 3N : corresponding to
En+1

z , En
z and En−1

z . The required memories are reduced into three-seventh.
Table 2 shows the required time to compute one thousand time-steps for the assigned fields.

The simulation has been done by Gateway G6-300. The proposed algorithm spends 25–50% of
the time required to Yee’s method.

5 Concluding Remarks

This paper proposed a new algorithm of 2-D FDTD method by applying the mid-point method
to wave equations. A simple example analysis in 2-D TM-mode shows that the algorithm really
works effectively. It was also presented that the proposed algorithm reduces both required
memories and computing time into three-seventh and 25–50% respectively, in comparison with
the Yee’s method. Besides, the 2-D TE-mode case can be considered similarly to TM-mode
case.

It should be noted that the length of one cell does not make any sense in Yee’s method,
since the magnetic conditions are given with a half cell distance against the electric ones. The
cell length must be shortened to dissolve such problem, and it requires more memories and
computation time. On the other hand, the one cell length works as it is in the proposed
method. Magnetic conditions are replaced by electric conditions without any distance as shown
in Section 4, thus we do not have to shorten the cell length.

The 3-D algorithm would be considered in the similar manner. It should be studied as a
future study.
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Table 1: Specifications of the simulation

Analyzed field 45 × 45 [mm2]
Cell size ∆x,∆y 1mm
Time step ∆t ∆/c0

√
2 (a = 1/

√
2)

Boundary condition Mur’s 2nd-order [2]

Table 2: Comparison of the required time

Number of Cells Yee’s Proposed

40× 40 1.04sec 0.49sec
100× 100 13.41sec 3.29sec
200× 200 61.03sec 25.92sec
400× 400 246.94sec 106.50sec
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Figure 1: The field to be analyzed
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Figure 2: The incident voltage

Figure 3: Behavior of Ez in the case t = 30∆t Figure 4: Behavior of Ez in the case t = 50∆t


