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1. Introduction

“Blectromagnetic Interference (EMI)” has become serious problems as development of the di-
gital technology, such as the downsizing in devices and performing high-speed operation. Since
these problems are so complicated that the mumerical analyses on the three-dimenional space
and time domain become very effective. But the conventional time-dependent methods such as FD-
TD or TLM essentially simulate only the solenoidal propagation field due to the assumption in
the formulation that the divergence of both electric and magnetic field is assumed to be zero.

Therefore, some radiation mechanisms in the EMI problems such as “Electro Static Discharge (E
SD)”, in which the radiation from not only current source but also space charges is included,
cannot be analyzed by only above methods. The scalar field must be analyzed separately.

I have already proposed the adaptation of the vector potential field to the time-dependent
mmerical methods, especially, to the Condensed Node “Spatial Network Method (SNM)"[1]-[4]. In
the formulation, both the vector and scalar potential can be comnected generally by using the
equivalent current or voltage sources for the Lorentz gauge condition. This gauge corresponds
physically to the conservation law between charges and discharge currents. Therefore, the pro-
posed method may be useful in the analysis of the field radiated from both current and charge
sources. In this paper, basic validity of the treatment of the radiation fields from charges
by using such the equivalent circuits for the vector and scalar potential is presented.

2. Formulation
The characteristic equations for the vector potential are given as follows by using the mag-
netic vector potential “A” and the electric vector potential “S 7.
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Here, o and ¢ are the hypothetical magnetic conductivity and the electric conductivity,

respectively. In Figure 1, the condensed node expression for the vector potential is shown
[3]. At each port, each of the propagation quantities “ A, ~ A;2;(Vt z, I)” 1is assignedto
give the connection between adjacent nodes. The wave equation for the magnetic vector po-te
ntial is given as follows.
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The Lorentz gauge condition between the magnetic vector potential A and the electric scalar
potential ¢ is given as follows;

=VV-A (2)
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Here, “F” function is defined as follows ;
09
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On the other hand, the scalar electric fieldhas the following conventional definition.
0
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From Equs. (4), the characteristic equations for the scalar field can be given as follows;
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The equivalent circuit for the electric scalar field is presented in Figure 2. By using these

equations and the divergence relation of between currents and chrgaes such asV+Js=-dp/dt-6p/e, ,

the left hand side of Equ. (2) can be rewritten by the equivlent current source J. as follows;
VV-A = —uVF = —uJs (6)

This current source is used in the spatial network for the vector potential in Figure 1.

3. Results and Discussion

In Figure 3, the analyzed model is shown. Figure 4 for the field characteristics from a sinu-
soidally changing monopole current source gives only the rotational component, that can be si-
mulated by the conventional time-dependent analysis methods. Figure b gives that the divergent
component is dominant for the sinusoidally changing point charge. The solencidal component is
slightly produced by the numerical errors. Figures 6 and 7 give the field characteristics for
a dipole which changes as the raised cosine form. The latter shows the largerotational com-
ponent from the current in the connecting conductor. In each figure, the variations in (a) and
(b) seem to be nearly coincident because of the definition of “F” based on the term “ V:A
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Fig.1 Conceptual condensed
node spatial network for
Ey vector potential with
the current source
deflned in Equ.(6).
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scalar electric field.
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Fig.4 Field Characteristics Fig.5 Field Characteristics

for the changing for the changing point

monopole current charge.
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Fig.6 Field Characteristics

for the changing dipole.
Q(t)=t(1-cos(2vt/T)2 )
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Fig.7 Field Characteristics
for the changing dipole
with a connecting
conductor.
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