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1. Introduction
Biconical antennas are widely employed as transmitting antennas in various

communication systems. They mainly utilize TEM (rarely TE01) coaxial mode excitation to
produce omnidirectional radiation patterns in the azimuth plane. Angular dependent modes
can also be used to generate multibeam radiation patterns [1].

Theoretical analysis of biconical antennas is mostly based on spherical waves, which
satisfy the boundary conditions at linear conical surfaces under assumption, that both cones
are excited symmetrically at the apices by a voltage source [2, 3]. Therefore a feed unit is
not taken into account and has to be completed experimentally.

In this paper a new approach to analysis of biconical antennas is presented. A key
feature of the approach is building of a generalized scattering matrix of a biconical antenna.

2. Mathematical Model of a Biconical Antenna
A biconical antenna is divided by cylindrical surfaces into sections of regular radial

waveguides with length much less than wavelength, as schematically shown in Fig. 1. An
open end of the outer radial waveguide is an antenna aperture. Fields in the waveguides

are represented using series of eigenfunctions. By
cascading the generalized scattering matrix of the
junction between coaxial and radial waveguides and
the generalized scattering matrix of the radially
irregular structure formed by the conical surfaces an
overall generalized scattering matrix of the biconical
antenna is determined. This matrix completely defines
the antenna including the reflection coefficient and
field amplitudes at the aperture under any chosen
excitation mode. The Kirchhoff-Huygens method is
used to obtain the far-field radiation pattern of the
antenna.

The proposed method allows to analyze
biconical antennas with non-linear elements of
cones and to take into account a feed
geometry. Furthermore, partial or full cylindrical
dielectric filling can also be included into
analysis (Fig. 1).

The solution for a general junction between
two radial waveguides (for instance, r1 and r2 in
Fig. 2) and determining of the generalized
scattering matrix for a radially irregular structure
have been considered in [4]. Closed form
expressions for the components of the radiated
far fields for an open ended radial waveguide also can be found in [4]. In this paper we will
consider the analysis of a coaxial waveguide to radial waveguide junction.
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3. Multiwave Analysis of a Coaxial Waveguide to Radial Waveguide Junction
The diffraction problem of a coaxial waveguide to radial waveguide junction has not

been solved in a generalized form so far. Known mathematical models are limited to the
TEM mode in a coaxial line and formulated in terms of input admittance normalized to the
coaxial aperture [5]. In this paper the solution of the problem is obtained in terms of
generalized scattering matrix, which describes all possible operation modes of the junction.

Transversal (to the r-direction) components of the electric and magnetic fields in a
radial waveguide are given by (azimuthal index m is omitted for brevity)
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where indices E and H mean TM and TE waves, respectively; Hm
( )1  and Hm

( )2  are Hankel

functions of the first and second kind; k kn n= −0
2 2γ ; k0  is the wave propagation constant
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 are the wave admittances. When m = 0
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At first we define a boundary condition on the surface II as E II
τ = 0  and an exciting

electric field on the surface I by
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where 
r
hi  is the transverse magnetic field of mode i ( m ≠ 0 ):
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H  is the i-th root of the function ( ) ( ) ( ) ( ) ( )′ = ′ − ′ ′ ′X x J x Y x J xd a Y xd am m m m m/ / ;

Jm  and Ym  are Bessel functions of the first and second kind, order m.
Then, the tangential magnetic fields on the surfaces II and I are found using Green’s

function for a coaxial resonator. At the same time, these magnetic fields can be represented

through equation (2) and 
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Similary, through defining E I
τ = 0  and E II

τ  by equation (1), we obtain the other

elements of the generalized admittance matrix Y ( )12  and Y ( )22 :
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Transition from the admittance matrix to a scattering matrix yields the generalized
scattering matrix of the junction between coaxial and radial waveguides.



Consider a cylindrical cavity formed by a short circuit in the radial waveguide (Fig. 3).
Experimental results have been presented by Keam and Williamson [5] for the phase of the
reflection coefficient for the partially filled with dielectric and hollow coaxial-line/cylindrical
cavity junctions. The dimensions are a = 1.525 mm, d = 3.5 mm, R = 41 mm, l = 150 mm,
c = 24.12 mm and ε = 2.1. Both cases for TEM coaxial mode excitation have been analyzed
using developed mathematical model. For the first case four generalized scattering matrices
have been progressively cascaded: of the junction between the hollow and filled coaxial
waveguides, of the coaxial waveguide to radial waveguide junction, of the junction between
the filled and hollow radial waveguides, and of the short circuit in the radial waveguide. The
computed results are plotted in Fig. 4 along with Keam and Williamson’s experimental
values. One can see that the theoretical results agree very well with experiment.

z
c R

l
ε

   
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Frequency (GHz)

-160

-120

-80

-40

0

40

80

120

160

200

P
ha

se
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (

de
g)

Filled case Hollow case

Measured

Measured

Fig. 3 Fig. 4

4. Conclusion
A mathematical model of biconical antennas that based on generalized scattering

matrices has been presented. Expressions for the elements of the generalized admittance
matrix of a coaxial waveguide to radial waveguide junction have been given. Owing to this a
feed geometry is incorporated into analysis. Bicionical antennas with non-linear elements of
cones and with partial or full cylindrical dielectric filling can be analyzed using the developed
mathematical model.

Experimental results for a biconical antenna as a whole are not yet available. But
correct results that have been obtained for the coaxial waveguide to radial waveguide
junction and for the radially irregular structure [6] allow to draw a conclusion about
correctness of the developed mathematical model of biconical antennas.
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