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1. Introduction
The two-dimensional (2D) plane wave scattering by a thick conducting half-plane is one of the

fundamental electromagnetic field problems. It includes reflection at the faces of the half-plane as well
as multiple diffractions at the two wedges. Although this problem can be solved rigorously based on the
Wiener-Hopf (WH) technique in spectral domain [1]- [3], its Fourier inverse transformation cannot be
performed analytically because the rigorous WH solutions in the spectral domain include coefficients to
be solved by infinite simultaneous equations [4]- [5].

When we analyze a complicated problem of the electromagnetic wave propagation in urban areas, it
is important to have some analytical solutions to the fundamental electromagnetic problems such as the
one treated here. In this case, the scattered fields should be expressed analytically in a compact form,
and the results should exhibit versatility, accuracy and stability. In this context, we attempt to intro-
duce an approximate analytical solution from the WH solution in order to apply it to more complicated
electromagnetic problems.

In this paper, we first investigate the behavior of the WH solution numerically in the spectral domain
focusing on the effect of the incident angle (θ) and the thickness of the half-plate. Second, based on the
Kirhihoff-Huygens principle, we introduce an approximate spectral expression for the far field in case of
θ > 90◦. Third, we compare the approximation with the WH solution in the spectral domain numerically.
It is shown that the results of the approximate expression are in good agreement with those of the WH
solution.

2. Wiener-Hopf solutions
Fig.1 shows the geometry of the 2D plane wave scattering by a conducting half-plate. The thickness

of the half-plate is 2b and the incident angle of the plane-wave isθ (0 < θ < π). We define the total (t),
incident (i) and scattered (s) fields as follows:

(Et,H t) = (Ei ,H i) + (Es,H s) (1)

Figure 1: Geometry of the problem for a half-plate.
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where the incident wave (E-wave) is given by

Ei
z = e− jκxcosθ− jκysinθ (2)

The Maxwell equations (E-wave) are rewritten as follows:

(
∂2

∂x2
+
∂2

∂y2
+ κ2)Es

z(x, y) = 0, Hs
x =

−1
jωµ0

· ∂Es
z

∂y
, Hs

y =
1

jωµ0
· ∂Es

z

∂x
(3)

where the time dependenceejωt is assumed andκ = ω
√
ε0µ0 is the wave number in the free space.

In the WH technique, we have used the following Fourier transformation pair defined by

F(ζ) =

∫ ∞

−∞
f (x)ejζxdx, f (x) =

1
2π

∫

c
F(ζ)e− jζxdζ. (4)

The rigorous solutions of the scattered field in the spectral domain can be obtained by use of the WH
technique; first we derive the spectral expressions for the scattered field by applying the complex Fourier
transformation to the wave equation in eq.(3), and second we decompose the spectral expressions into
two parts, regular in the upper or lower half plane in the spectral domain. Neglecting detailed discussions,
the final results are summarized as follows [4]- [5]:

Es
z(ζ, y) =

je− jk(y−b)

2G+
c (ζ)

· U
+
c (ζθ)G+

c (ζθ)
(ζ − ζθ) +

je− jk(y−b)

2G+
c (ζ)

∞∑

n=1

U+
c (−kcn)b2

cnG
−
c (kcn)

(kcn + ζθ)(ζ − kcn)kcn

+
je− jk(y−b)

2G+
s (ζ)

· U
+
s (ζθ)G+

s (ζθ)

(ζ − ζθ) +
je− jk(y−b)

2G+
s (ζ)

∞∑

n=1

U+
s (−ksn)b2

snG
−
s (ksn)

(ksn + ζθ)(ζ − ksn)ksn

=Λp(ζ)
j
√
κ − ζθ

(ζ − ζθ)
√
κ − ζ e− jk(y−b) + Ωp(ζ)

j
√
κ√

κ − ζ e− jk(y−b) f or y > b

(5)
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n=1

U+
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cnG
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2G+
s (ζ)
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snG
−
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√
κ − ζ ejk(y+b) + Ωm(ζ)
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(6)

where

k =
√
κ2 − ζ2, (7)

εs,n =


1/2 f or n = 0

1 f or n = 1,2,3, · · · (8)

In the above expressions, we have omitted the scattered field in the region−b < y < b, since the present
discussions are restricted only to the far field. It should be noted that the infinite number of unknown
coefficients must be determined by the related infinite set of algebraic equations [1].

In order to obtain the scattered field in the space domain in a compact form, we rearrange the
spectral expressions in eqs. (5) and (6) into two parts depending on whether it includes infinite number
of unknown coefficients or not. They are defined by use of the functionsΛp,m(ζ) andΩp,m(ζ) as follows:

Λp,m(ζ) =

√
κ − ζG+

c (ζθ)U+
c (ζθ)

2
√
κ − ζθG+

c (ζ)
±
√
κ − ζG+

s (ζθ)U+
s (ζθ)

2
√
κ − ζθG+

s (ζ)
(9)

Ωp,m(ζ) =

√
κ − ζ

2
√
κG+

c (ζ)

∞∑

n=1

U+
c (−kcn)b2

cnG
−
c (kcn)

(kcn + ζθ)(ζ − kcn)kcn
±
√
κ − ζ

2
√
κG+

s (ζ)

∞∑
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U+
s (−ksn)b2

snG
−
s (ksn)

(ksn + ζθ)(ζ − ksn)ksn
(10)

whereΛp,m(ζ) andΩp,m(ζ) are associated with the spectral functions of the scattered fields at the two
half-planes(y = ±b, x < 0) [6] and at the thickness part of the half-plate (|y| < b, x = 0), respectively.
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Figure 2: WH and approximate so-
lutions (f = 300MHz, θ = 135◦,
b = 10.1λ).
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Figure 3:Width of main lobeWw(θ).
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Figure 4:Height of main lobeWh(θ).

3. Approximation
The functionsΛp,m(ζ) andΩp,m(ζ) are dependent on the incident angle (θ) and thickness of the half-

plate(b) as shown in eqs.(9) and (10). Here, however, we consider only the functionΩp(ζ) in case of
θ > 90◦. In order to derive an approximate field expression, we apply the Kirhihoff-Huygens principle to
the boundary condition (Es = −Ei) at the thickness of the half-plate (−b < y < b). Using sampling and
Fresnel functions, we introduce an approximation as follows:

Ωp(ζ) ≈ 2 sin[(kθ − ζ)b]
kθ − ζ

√
2(κ − ζ)

κ
F[
√

2ζ cosθ] (11)

kθ =
√
κ − ζθ. (12)

The above approximate solution agrees quite well with the WH solution in case ofθ = 135◦ as shown in
fig.2. In other cases, however, eq.(11) exhibits some discrepancies in comparison with the WH solutions,
and so we modify the approximation by adding two terms; one is related to the width of the main lobe
and the other is associated with its height.

Fig.3 shows the ratio of the width of the main lobes of the WH and approximate solutions by using
the weighting functionWw(θ). Fig.4 shows the ratio of the height of the main lobes of the WH and
approximate solutions by using the weighting functionWh(θ). As a result, we can modify eq.(11) as
follows:

Ωp(ζ) ≈ 2 sin[(kθ − ζ)bWw(θ)]
kθ − ζ

√
2(κ − ζ)

κ
F[
√

2ζ cosθ] · 1

Wh(θ)
(13)

Ww(θ) = exp[2.15(θ − α)], α = 3π/4 (14)

Wh(θ) =

3∑

j=0

f (x j)
3∏

i=0,i, j

(x− xi)
(x j − xi)

, x = θ[rad]. (15)

In the above expressions,Wh(θ) is given by the Lagrange interpolation where numerical parameters are
chosen asx0 = 1.920 (θ = 110◦), x1 = 2.356 (θ = 135◦), x2 = 2.793 (θ = 160◦) and x3 = 2.967
(θ = 170◦), f (x0) � 0.843, f (x1) � 1.001, f (x2) � 0.906 andf (x3) � 0.652.

4. Numerical examples
In this section, we check the accuracy of the proposed method by comparing the approximations

with the WH solutions in figs.5 and 6 for the functionΩp(ζ) in case ofθ > 90◦. The parameters used
are chosen asf = 300MHz, (a)θ = 120◦, (b) θ = 150◦ andb = 10.1λ, b = 30.1λ whenζ is changed in
the region [−κ, κ]. The numerical results show that the presented approximations are in good agreement
with the WH solutions even ifθ andb are varied.
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(a) θ = 120◦
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Figure 5: Comparison between WH and approximate solutions (θ = 120◦, 150◦ andb = 10.1λ).
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Figure 6: Comparison between WH and approximate solutions (θ = 120◦, 150◦ andb = 30.1λ).

5. Conclusions
In this paper, we have derived a simplified analytical expression for the plane wave scattering by

a thick half-plate by using the sampling and Fresnel functions. We have also modified the expression
so that it can show acceptable accuracy for a wide range of incident angle. Numerical examples for the
function Ωp(ζ) show that the approximations are in good agreement with the WH solutions in case of
θ > 90◦.

As a future work, we need to derive analytical expressions for other functions and to apply these
results to the electromagnetic wave propagation problems in urban areas.
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