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1. Introduction 
Antennas serve as transducers between electromagnetic waves traveling in free space and guided 

electromagnetic signals in circuits. One of basic antenna parameters is radiating pattern from 
antenna[1]. Measurement of radiating patterns requires large open area or anechoic chamber, in which 
the testing system involves setting the antenna at specified distances from the system under test (SUT). 
FCC and CISPR regulations use distances of 3 and 10 meters [2]. Measurement under their regulations 
needs large space. The computation of far-field from near-field measurements bypasses the problems 
and requirements of direct far-field measurements such as open range, good characterization of the site 
attenuation, and logistic problems[3]. The author proposed a new near-to-far-field transformation for 
the finite difference time domain (FDTD) method [4]. In the conventional FDTD method, 
electromagnetic field nearby objects can be analyzed, however, the surface numerical integration is 
required for getting the far-field data, e.g. scattering patterns or radiating patterns [5]. Applying the 
proposed method, the far-field data can be obtained accurately by using the cylindrical function. 

In this paper, the above proposed method is applied to measurement of radiating patterns from 
antennas or radiating objects of EMI. Using this extended method, the far-field data can be obtained 
without large free space. In order to verify this extension, the prediction of radiating pattern by using 
near-field experiment is performed for Yagi antenna. Moreover, two types measurement system is 
suggested, which employ the vector network analyzer. 

 
2. Cylindrical functions 

Let us consider a two-dimensional problem. Most of electromagnetic radiation problems from 
radiating objects, such as antennas or electrical equipment, are discussed in two-dimensional 
cross-sections. Electromagnetic wave from two-dimensional radiating objects can be represented in 
the cylindrical functions, which are in the form of exact series solutions with unknown expansion 
coefficients. As one of examples, let us consider that the radiated wave from single line source is 
polarized with the electric field parallel to the z-coordinate. The electric field zE  can be described in 
the Hankel function as follows : 
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where rr  and rr′  are an observation point and a source point in the two-dimensional space, 
respectively. The ( )2

0H  is the 0-th order Hankel function of the second kind, which is the 
two-dimensional Green’s function. The 0k  is the wave number in free space. 
Radiated electric field zE  from the radiating objects can be described in terms of a generalized series 
of the Hankel function as follows : 
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where nc  is the unknown coefficient, ( )Hn

2  is the n-th order Hankel function of the second kind. 
The chief aim of this method is to obtain radiating patterns by measuring the near-field 
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electromagnetic wave without large space. In order to obtain radiating patterns, the unknown 
coefficients nc  in (2) have to be given. The unknown coefficients nc  can be determined from 
boundary condition, therefore in this method space for the problem is partitioned into two subregions 
by introducing a virtual boundary. 
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Fig. 1  Cross section of geometrical configuration. 

 
The virtual boundary is applied to the free space, which surrounds the radiating objects, it is named 

Virtual boundary C . The inside region of the virtual boundary C is named SgionRe  (interior-region), 
the outside region is called SgionRe  (exterior-region). In the SgionRe , radiated electric field is 
represented in the cylindrical functions, that is (2) with the unknown coefficients nc . On the other hand, 
the radiated electric field in the vicinity of radiating objects is measured in SgionRe . The boundary 
condition is continuity between the tangential electric field components of the cylindrical functions and the 
measured data on the virtual boundary C . 
That is 
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where the left side of (3) denotes the electric field from the results of measurements in SgionRe , 
and the right side of (3) means the electric field represented by cylindrical functions in SgionRe . 

The boundary condition is satisfied on all sampling points that are placed on the virtual boundary 
C at even intervals. The central angle between the th−γ  sampling point and the x-axis is defined by 
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where (2N+1) is the total number of sampling points. 
Cross section of geometrical configuration is shown in Fig.1, solid circles on the virtual boundary C 
denote the sampling points. 
In the first instance, near electric field around the radiating objects is measured in SgionRe . The 
results of measurements are in complex phasor, which is obtained by using a vector network analyzers 
in terms of magnitude and phase. Then, applying the (3) to all the sampling points on Virtual boundary 
C, a complex (2N+1) X (2N+1) square matrix equation is formulated as : 
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where R  is the radius of Virtual boundary C, 0k  is the wave number in free space. 
In above equation, ( )γθ,0

Re RkE Sgion
z  ( )NN ,,L−=γ  represents the complex electric field at a 

single operating frequency, which is the result of experiment in complex phasor. Solving the above 
square matrix equation, the unknown coefficients cn  ( )n N N= − , ,L  are determined. Accordingly, 
the radiated electric fields can be obtained by (2) in the SgionRe . 

In the far-field, the observation point is at infinity. Therefore, the argument of Hankel function 
rk0  tends towards infinity ( )k r0 1>>  in (2) for the far-field data such as radiating patterns from 

antennas. Using asymptotic expansion of the Hankel function ( ) ( )H k rn
2

0 , the far-field data, that is the 
radiating pattern ( )F θ , is obtained, that is, 
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Once expansion coefficients cn  are given, it is possible to obtain the far-field data by (7). 

 
3. Measurement system 

In the presented method, the near-field data in the vicinity of radiating objects is employed for the 
far-field data, such as radiating pattern or scattering pattern. Near electric field is measured in phasor, 
therefore measurement system has to be equipped with ability to measure amplitude and phase of near 
electric field. Using vector network analyzer, the complex electric field can be measured. 

A measurement system is proposed for one of examples. Vector network analyzer has two ports 
for measurement, Port-1 and Port-2. Each port has ability to measure the ratio of the vector quantities, 
which are incident, reflected and transmitted waves. Port-1 is connected to transmitting antenna as a 
SUT. The complex electric fields on all sampling points which encircle the SUT, are measured by 
using receiving probes. Each probe is placed at all sampling points. All receiving probes connect to 
Port-2 on vector network analyzer via a selector. Each wavelength from all probes to Port-2 via the 
selector must be identical. S-parameter S21, that is transfer function from Port-1 to Port-2, is measured 
for each sampling point. In this method, phase difference between electric field at each sampling point 
is important. S-parameter γ

21S  represents the ratio of phasor between the SUT and the probe at the 
th−γ  sampling point, as follows: 
 ( )

( ) ( ){ }SUT
SUTSUTSUT

j
A
A

jA
jA

S θθ
θ
θ

γ
γγγγ −⋅=

⋅
⋅

= exp
exp
exp

21     (10) 
 
where SUTA  and SUTθ  are the amplitude and phase on SUT (transmitting antenna), respectively. 
The γA  and γθ  are the amplitude and phase on probe at the th−γ  sampling point. 
The phase SUTθ  on SUT varies with each measurement of S-parameter γ

21S  ( )NN ,,L−=γ , 
however, the phase difference between the SUT and the probe at the th−γ  sampling point, 

SUTθθγ − , is invariable. Therefore, the transmitting wave on SUT has the role of reference wave. 
Moreover, relative phase difference between each sampling point are retained. 

The above system requires many probes and selector, thus an alternative measurement system is 
also proposed, it is shown as Fig.2. In this system, only one probe is fixed and SUT is rotated 
alternatively. Then, S-parameter γ

21S  ( )NN ,,L−=γ  are measured 2N+1 times with rotation of the 
SUT. Many probes and selector is not required in this measurement system. However, a mechanism of 
rotation for the SUT is necessary and 2N+1 times measurement is required. 
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4. Experimental Results 

In order to check the proposed method, experimental verification was provided by the systems 
Fig.2. The operating frequency was 2.45GHz ( cm24.12=λ ) and the radius of the virtual boundary C 
is cm9.97  ( 0.8=λR ). The 8-elements Yagi antenna was used as a SUT. A half-wavelength dipole 
was adopted as the receiving probe on the sampling points. 

For comparison the conventional method is applied to the measurement of radiating patterns. One 
of experimental results is shown in Fig.3. Both results, this method and the conventional method give 
good agreement. 
 
5. Conclusions 

In this paper, new method for prediction of radiating patterns is proposed. In this method, the 
cylindrical function, i.e. Hankel function, is adopted for the near-to-far field transformation. Applying 
this method, far-field data, that is radiating patterns, can be easily obtained without large space. In 
order to verify the proposed method, microwave experiments were performed. A measurement system 
applied this method was proposed. In the system vector network analyzer is employed for the 
measurement of phasor. Experimental verification was provided. The result by proposed method give 
good agreement with the result from the conventional method. 
Radiating patterns can be measured with compact systems by using the proposed method. 
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Fig. 2  Measurement system     Fig.3 Experimental results 
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