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1. Introduction 
 

 The Geometrical Theory of Diffraction (GTD) was established by Keller as an extension of 

Geometrical Optics (GO). In presence of structures with local radius of curvature close to or smaller 

than the wavelength, the GO rays alone fail to predict accurately the electromagnetic field 

distribution, especially in the shadow regions. The GTD simply adds to the GO field its diffracted 

rays whose possible directions of propagation follow simple laws, similar to the GO ones. In the case 

of reflection and refraction the field amplitude and phase changes at an interface are uniquely and 

exactly described by the Fresnel coefficients. On the contrary, diffraction coefficients depend on the 

geometry of the structure. The wedge diffraction coefficients are based on the analytical solution 

obtained by Sommerfeld for the perfectly conducting half plane. In this paper, we will first clarify 

and correct this attractive and simple GTD approach for arbitrary plane wave illumination; then we 

show how inaccurate it can be in the prediction of some components of the fields. 

 

2. Full 3D solution of the PEC half plane illuminated by a plane wave 
 

 Early 1896, Sommerfeld solved exactly the 2D problem of a perfectly conducting half plane 

illuminated by a TE or TM plane wave [1]. This great result was later generalized by Copson [2] for 

arbitrary values of β. We summarize below the results, based on the axis conventions chosen in [3]. 

 
Figure 1 : Geometry for the 3D plane wave illumination of the half plane 

 

The incident plane wave Ei ⊥ Hi  propagates along uS. Its polarisation is defined by the angle δ. It has 

a complex amplitude E0 = η0H0. Choosing the phase reference at (0,0,0)  the  phase factor of  Ei,Hi  at 

the observation point P(x,y,z) is given by 
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infinitely thin and perfectly conducting half plane located at y = 0, x > 0, the field in P can be 

expressed as TM.cosδ + TE.sinδ , where the TM and TE modes are given by : 

 

Table 1 : TM and TE modes for the 3D diffraction of a plane wave on a half plane 

TM mode ( iH
�

 is ⊥ to the edge, δ=0°) TE mode ( iE
�

 is ⊥ to the edge, δ=90° ) 
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On Fig. 2 we present two examples of field distribution in a 10λ x 10λ square area around the edge. 

 

Figure 2 : Left = |Ez| for (α,β,δ) = (60°, 0°, 0°)             Right = E
�

 for (α,β,δ) = (60°, 30°, 0°)  
 

3. GTD coefficents for the full 3D case 
 

 In his famous paper [4], Keller presents a formula for two diffraction coefficients applicable 

to wedges. This formula will be shown to be slightly incorrect in the 3D case (β ≠ 0). Also the way 

how to apply these only two D
+
 and D

-
 coefficients on any incident Ei and Hi fields is not revealed. 

Finally, we will show that the GTD for the edge problems, based on these two diffraction coefficients 

only, is accurate for the Z component of the fields (aligned with the edge), but not at all for the X and 

Y components, that contain the K terms responsible for infinite values at r = 0. 
 

3.1 The correct expressions for the 3D diffraction coefficients 

 

 As shown in [5] the expressions of D
+
 and D

-
 are derived from u1 and u2, after the Fresnel 

integral has been replaced by the following non asymptotic expansion, valid only if |ξ| > 1 : 

194



[ ] [ ] [ ] [ ]
πξ

ξχ
ξπ

ξχ
ξπ

ξχξ
ξξξξ

ie

i

e
i

i

ne
iF

ii

n
n

i

2)(

)2/1(

2)(

)2/1(

2

222

2/12

)0(

0
2/12

−=
Γ

−≈
+Γ

−=
>>∞

=
+∑  

where χ[ξ] = 1 if ξ > 0 and χ[ξ] = 0 if ξ < 0. 
Applying the same scheme to the 3D expressions of u1 and u2, we obtain : 
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Note that the factor cosβ (= sinβ0  with Keller’s angles definition) enters into the square root.  
 

3.2 The 3D parallel and perpendicular decomposition for the diffracted field 

 

 In the 2D case, the u// direction corresponds naturally to the direction along the edge (uZ) and 

u
⊥⊥⊥⊥ = uS × uZ. Now if we remember that the diffraction coefficients are obtained from u1 and u2 , if we 

examine carefully the 3D solution, ampute it from the K terms, Fu = F - FK, we can condense it for 

any polarisation (any combination of the TM and TE mode) into the vector form : 
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From these expressions, it becomes clear how to use the diffraction coefficients D1 and D2 to evaluate 

the fields Eu and Hu : the field incident on the edge must be decomposed into a component Fiy 

perpendicular to the half plane, and a component lying into the half plane. Note in passing that the 

classical TM/TE decomposition used to derive the Fresnel coefficients for the reflected ray can be 

equivalently replaced by the same new decomposition imposed to the diffracted rays. Not 

surprisingly : the reflection coefficients are obtained by enforcing the boundary conditions at the 

interface, and these naturally separate the components normal and tangential to the interface ! Fig. 3 
shows how closely this corrected 3D GTD model allows to predict Eu and Hu, except along the GO 

transition zones (θ = π ± α) where the arguments p and q of the Fresnel integrals are too close to 0 to 
allow the use of the non asymptotic expansion. 

 
Figure 3 :   3D edge diffraction for     z = 0 ; y = +2λλλλ    and   ( αααα , ββββ , δδδδ ) = ( 70° , 40° , 60° ) 
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3.3 The K terms 

 

 Unfortunately, the neglected K terms are not negligible at all, neither close to the edge nor at 

infinite distance from it : the K term and the GTD diffraction term are possibly of the same order of 

magnitude for many combinations of α and θ , independantly of the distance r to the edge ! We 

illustrate this with only one of the X,Y components, but it is a simple matter to verify that the same is 

true for all of them. 
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The example on Fig. 4 shows how wrong the GTD (u terms only, in blue) can be in predicting the 

exact X and Y components (full expression, in red) : as well the amplitude as the phase of the 

diffracted field, to be added to the GO field, can be highly over- or under-estimated. 

 
Figure 4 :  θθθθ = 225°   and   ( αααα , ββββ , δδδδ ) = ( 120°, 20°, 10° ) 

 

4. Conclusion 
 

The GTD based on two diffractions coefficients only cannot model accurately the field components 
perpendicular to the diffracting edge, as these coefficients don’t account for non negligible terms 

present in the analytical solution. Any attempt to incorporate these terms into the GTD diffraction 

coefficients is deemed to fail as they do not enter into a nice vector form like the u terms do. 
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