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1 Introduction
Sensor array processing techniques have attracted considerable interest in the signal processing society.

These techniques have focused mainly on high-resolution direction-of-arrival (DOA) estimation. Gen-

erally, the choice of DOA estimator is made adequately in accordance with the array geometries used.

Root-MUSIC[1] and MODE[2] are well-known algorithms that take advantage of the structure of uni-

form linear array (ULA) to obtain DOA estimates via polynomial rooting approach. These algorithms

can also be applied to the uniform circular array (UCA) using phase mode excitation[3]. In this case,

the azimuth angles of multiple incident waves are estimated which lie in the plane where the UCA is

placed. In the process of DOA estimation, the original DOA information in the element-space of the

UCA is transformed into the beamspace manifold similar to ULA-type one. However, this transforma-

tion causes some degradation in performance of the algorithms. To remove the drawback, we present

in the paper two iterative techniques using Gauss-Newton method based on MUSIC and MODE. The

key idea of our techniques is to use the DOA estimates of conventional method as the initial values of

the iterative DOA search for improved estimator performance. Although these techniques are somewhat

referred in [3], detailed characteristics are not examined. In this paper, therefore, we formulate these

techniques, and analyze their characteristics through computer simulation.

2 Data Formulation for DOA Estimation
A. The Data Model

Assume that an array is composed ofK sensors that receive the signals fromL(L < K) sources.

The array output is denoted by theK × 1 vector as

x(t) = A(θ)s(t) + n(t) (1)

whereθ = [θ1, . . . , θL]T is the DOA vector to be estimated,s(t) is theL × 1 vector of signal waveforms,

n(t) is the vector of internal noise, andA(θ) = [a(θ1) . . . a(θL)] is the K × L matrix whose columns

a(θl) (l = 1, 2, . . . , L) are the array response vectors forL sources. Then, the array covariance matrix

Rxx is given by

Rxx = E[x(t)xH(t)] = A(θ)SAH(θ) + σ2I (2)
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whereE[·] and (·)H denote the expectation operator and the complex conjugate transpose, respectively.

Also, S = E[s(t)sH(t)] is a covariance matrix of signal waveforms,I is the identity matrix, andσ2 is the

noise power. The eigendecomposition of (2) is given by

Rxx = ESΛSEH
S + σ2ENEH

N (3)

whereES is theK × L matrix whose columns are the eigenvectors ofRxx associated with theL largest

eigenvalues,ΛS is a diagonal matrix whose elements are theL largest eigenvalues, andEN is theK ×
(K − L) matrix containing the remainingK − L eigenvectors corresponding to eigenvalues equal toσ2.

B. Phase Mode Excitation of UCA

The K-element omnidirectional UCA geometry is depicted in Fig.1, whereγk = 2π(k − 1)/K.

Taking the center of the UCA as reference, the array response vector is expressed as

a(θ) = [ejζ cos(θ−γ1),ejζ cos(θ−γ2), . . . ,ejζ cos(θ−γK )]T (4)

whereζ = 2πr/λ, r is the UCA radius, andλ is the wavelength. The UCA beamforming weight vector

wH
m that generates phase modem is given by [3]

wH
m =

1
K

[ejmγ1,ejmγ2, . . . ,ejmγK ] (5)

Using a set of the weight vectors, the array response vector can be transformed into the phase mode

space by

CVH a(θ) =
√

KJζv(θ) (6)

C = diag{ j−M, . . . , j−1, j0, j−1, . . . , j−M} (7)

V =
√

K[w−M . . .w0 . . .wM] (8)

Jζ = diag{JM(ζ), . . . , J1(ζ), J0(ζ), J1(ζ), . . . , JM(ζ)} (9)

v(θ) = [e− jMθ, . . . ,e− jθ,ej0,ejθ, . . . ,ejMθ] (10)

whereJm(ζ) is the Bessel function of the first kind of orderm andM denotes the highest order mode

that can be excited by the aperture at a reasonable strength. The phase mode excitation transforms the

UCA response vectora(θ) into the ULA-like response vectorv(θ). Thus, most of the normal ULA

signal processing methods can be applied to the UCA in the phase mode domain. The so-called UCA-

ESPRIT algorithm[3] is included in this category. Therefore, we try to apply UCA-Root-MUSIC and

UCA-MODE tov(θ) in the same manner as UCA-ESPRIT.

3 Gauss-Newton method
A. Iterative MUSIC

For the MUSIC algorithm[1], minimization of the following cost function can be performed source

by source

Q =
∥∥∥EH

N a(θ)
∥∥∥2

= ‖q(θ)‖2 (11)

whereEN anda(θ) are defined in (3) and (4), respectively. Each DOA estimate is calculated iteratively

as

θl,n+1 = θl,n −
[
Re

{
uH(θl,n)u(θl,n)

}]−1
Re

{
uH(θl,n)q(θl,n)

}
(12)

u(θl,n) =
∂q(θl,n)
∂θ

= EH
N
∂a(θl,n)
∂θ

(13)
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whereθl,n is the DOA estimate of thel-th source at iterationn. Since each DOA is calculated source by

source in (12), their initial values must be different from each other.

B. Iterative MODE

The cost function for the MODE algorithm[2] that is minimized can be described in the following

form

F =
∥∥∥∥
{
I − A(AH A)−1AH

}
ESW1/2

∥∥∥∥
2

F
= ‖PEW‖2F = ‖r(θ)‖2 (14)

W = (ΛS − σ2I )2Λ−1
S (15)

P = I − A(AH A)−1AH (16)

EW = ESW1/2 (17)

r(θ) = vec{PEW} (18)

where the matricesES and ΛS are defined in (2), and‖ · ‖F and vec{·} denote the Frobenius norm

and operator stacking the columns of a matrix on top of each other, respectively. The expressions for

Gauss-Newton iterative approach can be written as

θn+1 = θn −
[
Re

{
GH(θn)G(θn)

}]−1
Re

{
GH(θn)r(θn)

}
(19)

G(θn) = [ g1(θn) g2(θn) . . . gL(θn)] (20)

gl(θn) =
∂r(θn)
∂θl

= −vec{(PDl A† + A†H DH
l P)EW} (21)

Dl =
∂A(θn)
∂θl

(22)

A† = (AH A)−1AH (23)

whereθn is the estimate at iterationn. The steps involved in this calculation are similar to those in [4].

4 Computer Simulations
A UCA of radius r = λ/2 with M = 4 being the maximum phase mode excited, was employed for

the simulations. The number of array elements was chosen to beK = 12. In each of the simulation

examples outlined below, two equipowered sources were located at 0◦ and 20◦, 100 samples of data

were taken from the array, and algorithm performance for each case was analyzed based on an average

over 1000 independent trials. Gauss-Newton method in the iterative MUSIC and MODE requires initial

values for the DOA searches, and these values were obtained from the estimates of UCA-MODE.

The first example is for the uncorrelated sources with SNR= 20 dB. The root mean square errors

(RMSE) of the estimates versus the iteration number are plotted in Fig.2, together with the Cramer-Rao

bound (CRB). The results for iteration 0 are the statistics of the initial estimates by UCA-MODE. In

the second example, we used the same scenario as in the first one but the sources are correlated with

each other (a correlation coefficient of 0.95). Fig.3 displays the convergence property of the iterative

algorithms. Figs.2 and 3 clearly demonstrate an improved performance of our techniques, except for

the iterative MUSIC method in the case of the highly correlated sources. The Gauss-Newton search

methods based on MUSIC and MODE fully converge in only 1 or 2 iterations.

Next, the performance of the algorithms was discussed at various SNRs and the results are plotted

in Figs.4 and 5 for uncorrelated sources and correlated sources with a correlation coefficient of 0.95,

respectively. The stopping criteria for iterative MUSIC and MODE were|Re{uH(θl,n)q(θl,n)}| < 10−5
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and‖Re{GH(θn)r(θn)}‖ < 10−5, respectively. The iteration numbers to stop the Gauss-Newton methods

are depicted in Fig.6. In Fig.4, the iterative MODE achieves the CRB in all cases of SNR, while the

iterative MUSIC is unsuccessfully above the CRB for lower SNRs. From Fig.5, it turns out that the

performance of iterative MODE is insensitive to correlation between sources, and achieves the CRB

for SNR beyond about 5 dB. In the case of the sources being low SNR or highly correlated, iterative

MUSIC is unable to resolve the DOAs, so that the Gauss-Newton search tends to fail, even if the initial

values are close to the optimum points.

5 Conclusion
We have presented the iterative MUSIC and MODE algorithms using the Gauss-Newton method. It is

clarified the iterative algorithms have reasonable properties in terms of estimation accuracy and compu-

tational cost. Especially, the iterative MODE has excellent performance for highly correlated sources.
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Figure 1: Uniform circular ar-
ray geometry.

Figure 2: RMSE vs. iteration num-
ber for uncorrelated sources.

Figure 3: RMSE vs. iteration
number for correlated sources.

Figure 4: RMSE vs. SNR for un-
correlated sources.

Figure 5: RMSE vs. SNR for cor-
related sources.

Figure 6: Iteration number re-
quired for convergence vs. SNR.
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