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This paper presents a Finite Integration Technique (FIT) solution of electromagnetic radiation problems 
involving rotationally symmetric inhomogeneous domains. Analysis is restricted to rotationally symmetric 
TM fields. Discretized Maxwell's equations are given for a sample problem and matrix formulations 
deduced (rom the discretized equations. Using diagonal local impedance matrices, different boundary 
conditions are implemented by changing impedance matrix elements. Since tMs approach emphasizes 
the matrix nature of the discretized problem, MA TLA8 software was used for the FIT implementation. 
Results are presented for radiated fields of dielectric resonators excited by electrically small loops. 
Introduction 
Finite Integration Technique (FIT) (1.J is a dual technique to Finite Difference (FD) technique. FIT uses 
integral forms of Maxwell's equations whereas FD uses differential forms. Application of the FIT to 
electromagnetic field problems involving rotationally symmetric domains has been presented in [2.]. 
Whereas in [2.] inhomogeneous interior boundary value problems were solved using FIT. this paper 
addresses the solution of inhomogeneous exterior boundary value problems. Open boundary conditions 
are implemented in order to solve radiation of rotationaly symmetric sources using FIT. The paper starts 
with the matrix formulation of the discretized integral curl equations of Maxwell for rotationally symmetric 
electromagnetic fields. Matrix equations are formulated for TM-to-$ fields with components E~ Hr. and 
Hz. Rotationally symmetric sources are implemented as current loops whose currents do not vary with 
angle $. All equations are derived for uniform square grids and rotationally symmetric domains with a 
rectangular cross-sections. 
Sample FIT Equations for TM Fields 
We start with TM field FIT equations for a 4 by 3 square (M=6.2=.6.I) cell cross-section of a rotationally 
symmetric domain shown below. Note that, in principle, each cell can be of different permittivity. 

The discretized (FIT) equations are written by approximating the tine and surface integrals in the curl 
equations of Maxwell for each of the cells. the details of which are given in [2.]. Both curl equations 
(circulation of E and circulation of H) are used to write the FIT equations. Normalized frequency COn is 
introduced as ~=CO (.6.IVc. where .6.1 is the grid step and c is the speed of light in free space. The 
impedance and the admittance of free space are denoted Zo and Yo. respectively. The number of cells in 
radial direction is denoted M, and the number of cells in the axial direction is denoted N. 
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Circulation of Electric Field 

E¢1 - ~l = -iCOn Za Hrl l E~l = -~n 10 (1I2)Hz1 
E02 - "" = -j"'n z., H", 2E.2 - 'E., = -j"'n Zo (312IHz2 
E~3 - ~3 = -iCOn Zo Hr3 3E¢3 - 2E¢2 ::: -lOOn Zo {S/2)Hz3 
E¢4 - E¢ l = -ioon Za Hr4 4Esl • 3E¢3 ::: -i(% Zo (7/2)Hz4 
E¢s - E¢2 '" -iron Za HrS 1 E¢4 = -jron Zo (112)H zS 
E¢6 - E¢3'" -iron Za Hr6 2E¢s - 1 E¢l4 = -j01l Zo (312)HzS 
Eb1 - E~ =-iCOn Zo Hr7 3E¢6 - 2EOS= -iCOn Zo (512)H z7 
Eb2 - E¢ =-ICOn Zo Hra 4Es2 - 3E¢l6 = -jCOn Za (7/2)H z8 
Eb3 - E46::: -joon Zo Hrg 

where the following averaged permittivities have been introduced: 

Circulation of Magnetic Reid 

Hrl·Hr4+Hzl-Hz2=iCOnYO~1 E¢f~ I~, 

Hr2 - HrS+ Hz2 - Hz3 :: i<On YO~2 E¢2+ 1¢2 
Hr3 - HrS+ Hz3 - Hz4 '" iWn YOE¢3 EQ3+ 1¢3 
Hr4 - Hr7+ Hzs - Hz6 '" i<On Yo~ E04+ II}4 
HrS - Hra+ HzS - Hz7 = iCiln YO~5 E¢S+ 1¢6 

HI'S - H r9+ Hz7 - Hza :- iCiln Y OE¢6 ~s+ 1(>6 

~1 = (£1+ £2+ E:s + £6) /4 f.c\!2"'" (~+ £3+ Eti + £7) 14 £413= (£3+ £4+ £7 + €g) /4 
~=(£5+Eti+E()+£1O)/4 ~5=(~+£7+EIO+El l ){4 f¢={~+£8+£11 +£"(2)/4 

and the source current densities (in AIm) have been co-located with the electric fields. These equations 
can be written in a matrix form as well. The matrices for a general case of an M by N cross-section can 
be deduced from the equations above and matrix equations written as: 

c .' e. = -''''nZo h, - Obi e", (1) 

C$Z Req, e$ = -jOlnZo Rhz hz - D s es (2) 

(C~r)Thr + {C¢lz)T h z = ioon Yo D£ eq + OJ i¢l (3) 

where C¢lr and C¢lz are "connection" matrices of sizes (M-1 )N by (M-1)(N-l) and M(N-1) by (M-1)(N-l), 
respectively; e$ denotes a column vector of ¢I -directed electric fields eq,; ( )T denotes transpose of the 
matrix within parenthesis; hr denotes a column vector of r-directed magnetic fields Hr, length (M-l )N; hz 
denotes a column vector of z-directed magnetic fields Hz, length M(N-1); Req, and Rhz are diagonal 
matrices of radial distances for electric and axial magnetic field nodes, respectively; Dbl denotes a 
diagonal matrix of coefficients for electric fields at the bottom and the top boundary size (M-1) by (M-l); 
ebtdenotes a column vector of $-directed electric fields E$ at the bottom and the top boundary, of length 
(M-t); Os denotes a diagonal matrix of coeHicients associated with electric fields at the side of the 
rotationally symmetric domain, size (N·l) by (N·l); es denotes a column vector of $-directed electric 
fields E¢I at the domain side, length (N·l); and D£ denotes a diagonal matrix of averaged relative dielectric 
constants, size (M-l)(N-l) by (M-l)(N-l) . We implement impedance-type local boundary conditions by 
expressing the $-directed electric fields on the boundaries in terms of the magnetic fields just inside the 
grid. For example, we may write: Eb1 = Zb1Hr1 ' ~, ::: ~1 Hr5, ES1 '" Zs l Hz3, and so on. Note that the local 
impedances Z .. are, in principle, all different. The local impedance boundary conditions can be 
represented in a matrix form using diagonal impedance matrices, one for the bottom and the top 
boundary and one for the side boundary: 

ebl = Z"h, (4) 
es = Zs h, _ (5) 

Replacing the electric fields on the boundaries with the local impedance boundary conditions we get: 

C. , .. = ""'nZo h, - 0" z", hr (6) 

C.,e~ = -j"'nZo h, - Os Z, h, (7) 

We can express the magnetic 'ields from the above equations, denoting diagonal unit matrix as I : 

hr= (-l)U"'nZol+ Db' Z"I-' C.r"~ (8) 

h, = (-l)U"'n2oI+ Os Zsl-' C~,e~ (9) 

Note that the matrices get inverted are all diagonal whose inversion is simple. Substituting (8) and (9) 
into (3) we get 
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{ (cQl "wolol + Db. z".J -1 CQr + (C~) TUWnlol , 0 , Z,J -1 CQ' + iWn YO DE ) eQ = (-1) 0 ; iQ (10) 

This system of equations can be solved for the electric field eljl (from which the magnetic fields are then 
calculated), subject to the known sources iQ and boundary conditions specified by matrices Zbt and Z . 
Once the system of equations has been solved, the equivalent electric and magnetic currents can b~ 
calculated for a cylindrical surface defined within the grid and the far·fields calculated using free-space 
radiation integrals (surface equivalence principle). 
Iterative Implementation of Impedance Boundary Conditions 
The local boundary impedances Z .. are ratios of local electric and magnetic fields. These fields are 
unknown (we want to solve for them) and thus the impedances can be found once the fields have been 
calculated. One way to resolve this is to assume some approximate values for the boundary impedances, 
calculate the fields for the assumed boundary impedances, and then find new boundary impedances from 
the calculated fields. This can be repeated until the relative change in the impedances between the two 
successive iterations is less than a user defined value. The initial "guess- for the boundary impedances 
can be the purely real impedance of free space, Zo, which is equivalent to assuming that the wave 
incident on the boundary is a normally incident plane wave. Another possibility, implemented in our 
programs, is to multiply Zo by coefficients dependent on the assumed angles 01 incidence at the different 
nodes on the boundary. In both cases the initially assumed boundary impedances are purely real (which 
is true if the boundaries are in the far field zone) but the iterative solution introduces (via calculated 
electric and magnetic fields) the imaginary parts as well. Note that a local angle of incidence needs to be 
calculated (the tangent of this angle is the ratio of the magnitudes of the transverse magnetic field 
components) at all points on the boundary. The local boundary impedances are then calculated using the 
electric field, the angle of incidence, and the appropriate (axial or radial) component of the magnetic field. 
For example, as shown in Fig. 2, the local bounda'Y impedance on the side boundary is calculated as: 

Zs. = (Es.1 Hz.) cosq> = (Es. 1 Hz.) IHz.l/( IHz.I' + IHr.~ )112 (11) 

where I I denotes absolute value. Note that the first term in (14) is complex and the second term is real. 
Implementation and Sample Results 
MATlAB soft\vare has been selected to implement the above because MATlAB provides a programming 
environment with built-in matrix functions and algorithms based on the EISPACK and UNPACK algebra 
packages. Since MATLAB is available for a variety of platforms, from PC's to workstations to 
mainframes, the programs are easily "ported- and exchanged. Results are presented for the radiation of 
a cylindrical dielectric resonator (DR) with the radius of Smm and the height 01 Smm. The relative 
permittivity of the DR is 38. The resonator is mounted on a PEC plane (impedances for the bottom 
boundary are all set to 0), as shown in Fig. 3. The computational domain is a uniform grid of 12 by 12 
square cells with 6.1 = 1 mm. The resonator Is excited by a constant 1A current loop of the same radius as 
the resonator and positioned at 2/3 of the resonator height. The frequency of the current in the loop is 
·swept" from 4GHz to 9GHz and the maximum radiated field on a 1m circle plotted vs. frequency (Fig A). 
The same is repeated for the loop without the DR (Fig.5), for comparison purposes. Notice that the 
radiated power for the same loop without the resonator is much smaller in the same frequency range, 
which indicates that the combination of a small loop and a dielectric resonator can be used as a radiating 
element. The radiation efficiency and coupling to the source depend on the field structures of the 
resonant modes of the DR. The magnetic vector plot (Fig.S) and the radiation pattern (Fig.7) are shown 
at the frequency of the first peak of the radiated field, corresponding to the first TM resonant mode of the 
open dielectric resonator. These results were obtained using MATlAB on a 2SMHz, 36S-class PC. 

Summary 
Finite Integration Technique has been applied to solve for radiation of rotationally symmetric dielectric 
bodies excited by a current loop with no angular variation of current. Open boundary condition has been 
implemented using local boundary impedances which are iteratively improved. The radiated fields are 
calculated using surface equivalence principle. Results show that DR's enhance radiation of small loops. 
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Fig . 2 : Fields at a boundary 
node 

Fig.3: DR mounted on PEe 
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Fig.6: H- field plot for the 
first TM DR resonance 
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Fig.4: Max radiated field for a loop 
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