
 

ULF ELECTROMAGNETIC WAVY STRUCTURES IN F-REGION OF THE 
SPHERICAL IONOSPHERE CAUSED FROM INHOMOGENEITY OF THE 

GEOMAGNETIC FIELD 
 
 

George ABURJANIA, Khatuna CHARGAZIA, George JANDIERI, Oleg KHARSHILADZE 
Laboratory of investigation of extraordinary phenomena 

I. Vekua Institute of Applied Mathematics, Tbilisi State University  
2 University str., 0143 Tbilisi, Georgia  

E-mail: aburj@mymail.ge, aburj@viam.hepi.edu.ge 
 
 

 
1. Introduction 

Large-scale wave structures play an important role in the energy balance and in circulations of 
the atmosphere and oceans. Numerous observations show that planetary-scale perturbations of an 
electromagnetic nature are always present in the ionosphere in the form of background wave 
perturbations [1-3]. Of particular interest among these perturbations are so-called large-scale ultra-
low-frequency (ULF) ionospheric perturbations propagating around the Earth along the parallel at 
fixed latitude. They are especially pronounced during geomagnetic storms and substorms [4], 
earthquakes [5], major artificial explosions, military operations [6], etc.  

In nature, these perturbations manifest themselves as background oscillations. Observations 
showed that forced oscillations of this type occur in the ionosphere under the pulsed action from above 
(geomagnetic storms [4]) or from below (earthquakes, volcanic eruptions, and major artificial 
explosions [5,6]). In the latter case, the perturbations exist in the form of localized solitary wave 
structures. 
 
2. Model equations 

We investigate the possible generation of the planetary-scale ULF electromagnetic wave 
structures in F-layer of the spherical ionosphere by permanently acting fundamental factors for the 
planetary – scale processes - the latitude gradient of the geomagnetic field and angular velocity of the 
Earth rotation. We use magnetohydrodynamic equations for the ionosphere taking into account the 
fact, that large-scale flows don’t perturb density and concentration of the medium particles and 
excepting acoustic-gravity waves. We consider horizontal incompressible flow in a spherical 
coordinate system bounded to the rotating Earth. Let θ -denotes an addition to the latitude 
( )'2/' ϕπθϕ −= , λ  is a longitude; r -distance from a center of the Earth. It is considered that 

velocity component on r axis is equal to zero 0=rV ; ( )tV ,,λθθ  - velocity component is directed 
along meridian (it is positive if  velocity is directed to the north); ( )tV ,,λθλ - velocity component 
along the parallels (it is positive if velocity is directed to the east). For simplicity we assume, that the 
geomagnetic field has only vertical component θcos0 pr HH −= , i.e. we shall consider moderate 

and high latitudes; where 4105 ⋅=pH nT is the strength of geomagnetic field near Pole. 

Consequently, perturbation of geomagnetic field has only vertical component ( )thr ,,λθ . Normal, to 
the Earth surface, component of the angular rotational velocity is important for the dynamic of motion 
for our case θcos0Ω=Ω r .  

Further, we would accept that the zonal wind determined by the experimental expression 
θαλ sinrV = , where α  is the constant angular velocity of the atmosphere zonal circulation (the so-

called index of the circulation). The value of α  varies seasonably: 005.0 Ω=α  in winter, 

0025.0 Ω=α  in summer. Identically, the stream function is ( ) ( )t,,' λθθ Ψ+Ψ=Ψ . Then, by 

ignoring rV  in the continuity equation along with the term of non-compressibility, we can determine 
the component of velocity through stream function: 
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In these conditions the close system of dynamical equations for the large-scale wave structures – 
the equation of motion of the medium particles and induction equation, for dissipative ionosphere can 
be reduced to the form:  
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Here, we introduce designations: 
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where N is a concentration of the charged particles; nN  - a neutral concentration; M - unit mass of 
ions and molecules; c  is a light speed; R  - the Earth radius; e  - elementary charge. In our task r is a 
parameter and therefore we shall replace r by the Earth radius R in the (3)-(5) taking into account 
thickness of the atmospheric layer; Λ is constant coefficient of surface friction between atmospheric 
layers and is of the order of 1510 −− s  for the ionospheric heights. Further for investigation dynamic of 
large-scale (planetary) zonal flows in F-region of the ionosphere we will use the system of nonlinear 
equations (3) and (4). 
 
3. ULF electromagnetic planetary linear waves 

We begin an investigation of (3) and (4) from the analyses of motion having small 
amplitude. It is expedient to analyze necessary group of the solutions of linear dynamic 
equations on the sphere at investigation of planetary waves having horizontal spatial scale of 
the order of Earth radius RL ~ . Therefore, we shall seek the solution of these equations in 
the form ( ) ( )tiimfh ωλθ −Ψ exp~,  in linear approximation, where m  is a whole number; 
ω - frequency of perturbations and ( )θf  is an unknown function of θ . 

For this kind of solution of eq. (3) (4) yields a new equation for f:  
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The relation (6) presents the equation for the associated Legrangian pollinoms. This equation has 
unique bounded solution if the sum of the second and third terms in the brackets equal to ( )1+nn  ( n  
is a whole number). Corresponding condition give the dispersion equation: 
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Submitting eigen-frequency 0ω  and decrement of damping γ  by formula γωω i+= 0 , 0ωγ << , 
from (6) we get the dispersion equation for eigen- frequencies: 
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Let us estimate the order of the values of coefficients in equation (8) for the characteristic 
values of the parameters in F-region of the ionosphere: 15

0 103,7 −−×=Ω s , 
16

0 103~04.0 −−×Ω= sα , TH p
5105 −×= , 314

n m103N −×= , 311 m103N −×= , 

m104,6R 6×= . Thus, 143 1010 −−− ÷= sHα , 154 10102 −−− ÷≈Ω sH , 1510 −−=Λ s . From there 

it follows, that mm HpH αωωα ,,, 00 Λ>> , 0
'
0 ωω ≈ . taking all these into account, from (8), (9) we 

get a spectrum of the oscillations: 
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We introduce the angular velocity of the wave propagation m/dt/d 0ω=σ  , using (10) and 
determine the linear phase velocity of the wave motion along the latitudinal circles (parallels) - 

dt/dsinRVV ph σ⋅θ==λ . Thus, we get the expression for the phase velocity of the waves: 
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This wave is the fast and represents itself a new mode of eigen-frequencies of the oscillations in F-
region of the ionosphere. The wave (10), (11) is weakly damped with decrement: 1610 −−≈ sγ  and 
can propagate along the parallel to the west as well as to then east. Calculation show, that phase 
velocity of these waves are in the range (20-1400)km/s; the period of these waves is in the interval (1-
105) s; the wavelength is 310 km or more; their frequencies are in the ULF range of  ( 31010 −− ) s-1. 
From induction equation (4) can be estimated amplitude of the geomagnetic pulsations generated by 
these waves, R/Hh r0r ξ≈ , where ξ  is a transversal displacement of charged particles. At 

displacement ξ  equals 0.1 and 1 km for 045=θ  , rh  is equal to 8 and 80 nT correspondingly. These 
waves, apparently, were registered experimentally in midlatitude region of the ionosphere in [1-3]. 
 
4. Nonlinear ULF vortical structures 

Now we begin solving system of the nonlinear equations (3),(4). These equations represent the 
partial differential equations with variable coefficients, analytical solution of which is very difficult. 
To simplify the problem we assume the motion at any fixed latitude  00 2/ θ−π=ϕ  . It is convenient 
to introduce the new latitudinal and longitudinal coordinates 0sinRx θλ= , ( )Ry

0
θ−θ−= , which 

allows us to freeze variable coefficients in the system of Eqs. (3),(4).  Then, in mentioned system of 
equations the coefficients become constant and their stationary solution can be sought following the 
work [7]. 

Thus, we will seek the solution of the nonlinear equations (3), (4) in the non-dissipative 
approximation ( )0=Λ  in the form of the stationary regular waves ( )y,η= ΨΨ , ( )y,hh η= , 
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propagating along the latitudes x  with velocity constU = , without changing the shape, Utx −=η . 
It is not difficult to show the Eqs. with the η  and y  variables are equivalent to  

                                                           ( )yFy 12 β+=β−⊥ ΨΨ∆ ,                                                  (11) 
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where 0R sinRC θα=  is the characteristic phase velocity of ordinary Rossby waves. 
Following Aburjania (1996) we use the polar coordinates along the Earth surface 

( ) 2/122 yr +η= , η=ϕ /ytg  and the circle with the radius a  . Further, we would demand that 
( )ϕ,rΨ  and ( )ϕ,rh  be twice differentiable continuously (including the circle ar = ) along its 

argument and vanishes exponentially when ∞→r . Then (11) will have the following solutions: 
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where nJ  Bessel’s function of the n-th degree and nK  the Mcdonald function; p  and χ  parameters 
are related by the dispersion relation 
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Taking into account the dispersive equation (15), solution (13) has two free parameters U  and a  . 
The disturbed solution obtained from (13) equals to )prexp(r~h, 2/1 −−Ψ  when ∞→r . So, the 
wave is localized on the Earth surface ( )y,η . The structures of this type represent a pair of oppositely 
circulating vortices (cyclone-anticyclone) of equal intensity, propagating along the parallels on the 
background of the pure zonal –mean west to east flow. The nonlinear vortex structures move with 
velocity of order of )22/(CCU 0HHR ΩΩ +α+> . The characteristic scale is of order of 

( )[ ] km10~/URa~d 42/1
0Ω+α≈  . 

            The properties of the wave structures under investigation are very similar to those of ULF 
perturbations observed experimentally in the ionosphere at middle latitudes [1-6]. 
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