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Abstract

In order to store the information of a Method of Moments (MoM) matrix one can save the maximum
of computational memory by the application of a mapping procedure to the subsectional basis
function approach. The so-called law of mapping is illustrated by using the subsectional basis function
approach to the mixed potential integral equation (MPIE).

Summary

The numerical solution of electromagnetic field problems usually requires the solution of large sys-
tems of linear equations. Considering, for example, two dimensional conducting objects (patches)
embedded in a stratified medium one characterizes them by certain boundary conditions. An integral
equation can be derived with the sole unknown being the true electric surface current. Replacing
these planar structures by an electric current sheet one is able to reduce the integral equation by the
MoM to a matrix algebraic equation which is then solved on the computer. If one takes advantage
of the rotational and translational symmetry of the Green's functions in the transverse directions,
one can map the whole MoM-matrix onto the first row of the matrix. Thus the whole information
of a N x N matrix can be stored in the computational memory of a 1 x N matrix. Let us now
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Figure 1: Geometry under investigation

apply the procedure of mapping to the subsectional basis function approach in the MoM. Following
[1], there is an area A given by k, X I, equivalent subsections Ay ;. Taking two adjacent elementary
cells Ay that share a common border perpendicular to the z-direction, we introduce a new kind
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of subsections, the so-called z-directed subsections A7, ,. Taking two adjacent elementary cells Ay,
that share a common border perpendicular to the y-direction, we generate the so-called y-directed

subsections A" These directed subsections satisfy AZ = = Ag; + Ag 41 and A = Ap;+ Ag41y-
The a.rra.ngement is classified in an example in Fig.(1). The mdlces (i,7) and (m, n) are used within
the intervals (i,7) € [(1,1),(ky—1,l;)] and (m,n) € [(1,1), (kyJzr—1)] with (iy,jz) = (ky—1,l;) and

(my,nz)=(ky,lz—1), respectively . The area A is composed of 4 X 5 equivalent subsections AZ, . in
the z-direction or 3 x 6 equivalent subsections A?J in the y-direction.

Let us now introduce correspondences ¢ that depend on the mean value of the distance between two
weighted subsections A;; and A, ,. In general we describe them by

= ¢(AP,(s) — AL 4(1),c€C sl

with C is the set of all correspondences ¢. The superscripts p and ¢ represent the orientation of
the specific subsection in p-direction and g¢-direction, in our case p = y and ¢ = z. The symmetric
or antisymmetric functions which weight the subsections, are given by the indices s and 1. Even
functions are represented by (e), odd functions by (o). Fig.(2) illustrates the symbolic writing in
Eq.(1) with s = e and t = o. In connection with the application of the MoM to the MPIE the
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Figure 2: Correspondence ¢

function A7, . represents the cartesian component of the surface charge ¢ generated by a z-directed
surface current I.. The subsections Af’d refer to the so-called razor test functions.

Working with the surface charge ¢ and a surface current distribution P = (I, I,)nT we choose
two-dimensional pulse functions and rooftop-type functions for the basis functions as well as uni-
dimensional pulse functions for the test functions as shown in Fig.(3).
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Figure 3: Basis and test functions

Following [1] we get the required law of mapping:

s =




(A7 ;(s) —— AL a(1)) — CoS * a((|m —i| + &) * n + |n — j| + 1+ 6;) (2)

Eq.(2) maps all the correspondences c onto an one-dimensional array a’. Introducing a general
correspondence matrix

T (st) = X X exCRL (s) &F, (3)
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on account of Eq.(2) we can assign every element C}’ K.z (s,t) of the correspondence matrix C (s,t)
to one element a(L) of the array a’. It is obvious that the array @’ represents exactly the first row
in our correspondence matrix C  (s,t). We obtain

L

Depending on which symmetry relations ¢ — m and j —— n are used the additional terms

6y =mj—if and é; = nl —jf must be added to Eq.(2). In all, we have to distinguish between the

four cases in Fig.(4). Considering the weigting functions one discovers that they directly interfere

Figure 4: The four cases

with the four cases of Fig.(4), too. Defining the mean distance for correspondences ¢ being always
positive in the first quadrant the introduction of weighted subsections forces only a change of sign
(CoS). Applying the procedure of mapping to the MoM-matrix equation for ideal conductivity [2],
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the contributions of the surface current I and the surface charge ¢ in the system matrix C can be
written as
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Let us now demonstrate the law of mappmg by an example. If we assume that there are basis
functions AZ _(t) and test functlons Af () defined over on area of 4 X 6 equivalent cells, the

correspondence matrix o (e,o), for example, can be easily computed. The additional terms
by =mi—iy = 4-3 = 1form < i (cases 3 and 4) and 6, = n7—j} = 5-6 = -1
for n < j (cases 2 and 3) must be added to Eq.(2). Following [1] we get the change of sign
matrix F, which means a negativ sign for the cases 2 and 3. With elementary correspondences
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c*€ C*,C":={+1,42,43,44,+5,+1,4+2,+8,+4,+5,46,+7,+8,+9,+10,+11,+12,+13,+14,+15}, the matrix is ex-
plicitly given by

F +1 42 +3 44 +5 41 42 +3 44 45 +6 +7 +8 +9 +10 +11 +12 +13 +14 415 T
+1 42 43 +6 +7 +8 49 -11 +11 +12 +13 +14
-2 -1 +1 +2 43 -2 -1 +1 42 43 -7 —6 46 +7 +8 -12 —11 +11 +12 +13
-3 =2 =1 41 42 -3 -2 -1 41 42 —8 -7 —6 46 +7 -13 =12 —-11 +11 +12
—4 -3 -2 -1 41 -4 -3 -2 -1 +1 -9 -8 =7 —6 +6 -14 —13 —12 —11 +11
-5 -4 -3 -2 -1 -5 -4 -3 -2 -1 -10 -9 —8 =7 -6 -15 —14 —13 -12 -11

-0 -9 -8 -7 -6 -5 -4 -3-2 -1 -5-4-3-2 -1 -10 -9 -8 -7 -6
+11 +12 413 +

14 415 46 +7 +8 49 +10 +1 +2 43 44 45 +1 +2 +3 +4 45
—-11 +11 +12 +13 +14 -6 +6 +7 +8 +9 -1 +1 +2 +3 +4 -1 +1 +2 +3 +4
—-12 =11 411 +12 413 -7 -6 +6 +7 48 -2 -1 41 42 43 -2 -1 +1 +2 +3
-13 =12 —11 +11 412 -8 -7 -6 +6 +7 -3 -2 -1 +1 +2 -3 -2 -1 +1 42
-14 —-13 -12 -11 411 49 -8 -7 -6 46 -4 -3 -2 -1 41 -4 -3 -2 -1 <1
-15-14-13 -12 -11-10-9 -8 -7 -6 -5 -4 -3-2 -1 -5 -4 -3 -2 -1

The first row of the matrix is written in bold type and the law of mapping (2) is verified for all
matrix elements.

Conclusion

Consequent application of the subsectional basis function approach of the Method of Moments to
the Mixed Potential Integral Equation yields a simple algorithm which reduces the computational
storage of the MoM-matrix to a minimum. Applying a procedure of mapping (2) it is possible to set
up a matrix containing only one row. Thus the information of a quadratic N X N matrix requires
only the storage of a 1 x N matrix. For a 10% x 10° matrix, for example, this represents a reduction
in storage by three orders of magnitude. That is clearly the minimum storage to be needed.
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