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In order to store the information of a Method of Moments (MoM) matrix one can save the maximum 
of computational memory by the application of a mapping procedure to the subsectional basis 
function approach. The so-called law of mapping is illustrated by using the subsectional basis function 
approach to the mixed potential integral equation (MPIE). 

Summa r y 

The numerical solution of electromagnetic field problems usually requires the solution of large sys
tems of linear equations. Considering, for example, two dimensional conducting objects (patches) 
embedded in a stratified medium one characterizes them by certain boundary conditions. An integral 
equation can be derived with the sole unknown being the true electric surface ctlrrent. Replacing 
these planar structures by an elect ric current sheet one is able to reduce the integral equation by the 
MoM to a mat rix algebraic equat ion which is then solved on the computer. If one takes advantage 
of the rotational and t ranslational symmetry of the G reen's functions in the transverse directions, 
one can map the whole MoM·mat rix onto the first row of the matrix. Thus the whole information 
of a N x N matrix can be stored in the computational memory of a 1 x N matrix. Let us now 
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Figure 1: Geometry under investigation 

apply t he procedure of mapping to t he subsectional basis function approach in t he MoM. Following 
(I J, there is an area A given by kIJ x l~ equivalent subsections Ak,/ . Taki ng two adjacent elementary 
cells Ak,l that share a common border perpendicular to t he x·di rection, we introduce a new kind 
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of subsections, the so-called x-directed subsections A!,.,n- Taking two adjacent elementary cells Ak,/, 
t.hat share a. common border perpendicular to the y-direction, we generate the so-called y-directed 
subsections AfJ - These directed subsections satisfy A!,n = Ak,l + Ak,l+l and Ar.J = Ak,l + Ak+I,/. 
The arrangement is classified in an example in F ig.(l). The indices (i,j) and (m,n) are used within 
the intervals (i.n E [( l .l).(k, -l.l.)] and (m .n) E [(l.l).(k,.l.-l)] with (i,i.) = (k,-l.l.) and 
(mllln~) = (kll,l~-l). respedively . The area A is composed of 4 x 5 equivalent subsections A;'.n in 
the x-direction or 3 x 6 equivalent subsections Af,j in the y-direction. 

Let us now introduce correspondences c that depend on the mean vaJue of the distance between two 
weighted subsections Ai,) and A m .n . In general we describe them by 

c:= c(Af.,(s) ~ A~,n(t)) • c E C (1 ) 

with C is the set of all correspondences c. The superscripts p and q represent the orientation of 
the specific subsection in p-direction and q·direction, in our case p = y and q = x. The symmetric 
or ant isymmetric functions which weight the subsections, are given by the indices sand 1. Even 
functions a.re represented by (e) , odd functions by (0). Fig.(2) illustrates the symbolk writing in 
Eq.(l) with s = e and t = o. In connection with the application of the MoM to the MPIE the 
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Figure 2: Correspondence c 

function A~ n represents the cartesian component of the surface charge q generated by a x-directed 
su rface curr~nt lz. The subsections ArJ refer to the so-called razor test functions. 

Working with the surface charge q and a surface current distribution 7T = (lz;,Iy)nT we choose 
two-dimensional pulse functions and rooftop-type functions for the basis functions as weI! as uni
dimensional pulse functions for the test fU.llctions as shown in Fig.(3). 
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Figure 3: Basis and test functions 

Following [1J we get the required law of mapping: 
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c(Ar)s) - A:".n(Ill ~ CoS. o((lm -;1 + D,)' n~ + In - il + 1 + D.) (2) 

Eq.(2) maps all the correspondences c onto an one-dimensional array (iT. Introducing a general 
correspondence matrix 

C''(s,I) = L L 'KC';L (s,I) ,I, (3) 
K L 

on account of E;q.(2) we can assign every element Cf{ L (s,t) of the correspondence matrix =e!9 (.s,t) 
to one element a(L) of the array 117. It is obvious tha~ the array aT represents exactly the first row 

in our correspondence matrix [jJHl (s,t). We obtain 

-T ,, - C" ( I)-T a = ~ el l,L 5, eL' 
L 

( 4) 

Depending on which symmetry relations i - m and j +--- n are used the additional terms 
6~ = m~ -i~ and 6z;: = n~ - j~ must be added to Eq.(2). In all, we have to distinguish between the 
four cases in Fig.(4). Considering the weigting functions one discovers that they directly interfere 

y 

CD m<i.n<j CD m<i,n?:i 

Figure 4: The four cases 

with the four cases of Fig.(4), too. Defining t he mean distance for correspondences c being always 
positive in the first quad rant the introduction of weighted subsections forces only a change of sign 
(CoS). Applying the procedure of mapping to the MoM-matrix equation for ideal conductivity [2], 

(5) 

the contributions of the surface current I and the surface charge q in the system matrix C can be 
written as 

~ C (e,e) + C (e,o) C (e,o) 
( 

~ .. II) - .. I.) ~·'I.) ) 

C = C,.I')(e,o) C,,(lI(e,e) + C"I')(e,o) . 
(6) 

Let us now demonstrate the Jaw of mapping by an example. If we assume that there are basis 
functions A1n.n(t) and test functions ArJ(s) defined over on area of 4 x 6 equivalent cells, the 

correspondence matrix Cll~(q"e.o), for example, can be easily computed. The additional terms 
611 = m~ - it = 4 - 3 = 1 for m < i (cases 3 and 4) and 5~ = ni - j~ = 5 - 6 = -1 
for n ~j (cases 2 and 3) must be added to Eq.(2). Following [1] we get the change of sign 
matrix F, which means a negativ sign for the cases 2 and 3. With elementary correspondences 
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c· E C·, C· := {+1,+2,+3,+4,+5,+1.+2,+3,+4 ,+5,+6.+7,+8.+9,+10,+11.+12,+13,+14.+15} , the matrix is ex
plicitly given by 

+1 +2 +3 +4 +. +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 + 12 +13 +14 + 15 
-1 +l +, +3 +< -1 +1 +2 +3 +< -, +6 +7 +8 +, -11 +11 +12 +13 +l< -, -1 +1 +, +3 -, -1 +1 +, +3 -, -6 +6 +7 +8 -l2 -11 +11 +l2 +13 
-3 -, -1 +1 +, -3 -, -I +1 +, -, _7 -6 +6 +7 -13 -12 -11 +11 +1' -. -3 -, -1 +1 -. -3 -2 -I +l -9 -8 -7 -6 +6 -14 -13 -12 -11 +11 
-5 -. -3 -, -1 -5 -. -3 -2 -1 -10 -9 -8 -7 -6 -15 -14 -13 -12 -11 
+6 +7 +S +, +10 +1 +2 +3 +4 +5 +l +2 +3 +4 +5 +6 +7 +8 +, +10 
-6 +6 +7 +8 +, -1 +1 +2 +3 H -1 +1 +2 +3 +< -6 +6 +7 +S +, 
-7 -6 +6 +7 +6 -, -1 +1 +, +3 -, -1 +1 +, +3 -7 -6 +6 +7 +8 
-6 -7 -6 +6 +7 -3 -, - 1 +1 +2 -3 -2 -I +1 +2 -8 _7 -6 +6 +7 
-9 -8 _7 - 6 +6 -. -3 -2 -1 +1 -4 -3 -2 -1 +1 -9 -6 -, -6 +6 
-10 -9 -6 -, -6 -5 -4 -3 -2 -1 -5 -<\ -3 -2 -1 -10 -9 -8 -, -6 
+11 +12 +13 +14 +15 +6 +7 +8 +9 +10 +1 +2 +3 +4 +5 +1 +2 +3 H +5 
-11 +11 + 12 +13 +14 -6 +6 +1 +8 +9 -1 +1 +2 +3 +< -1 +1 +2 +3 +< 
-12 -11 + 11 +12 +13 -7 -6 +6 +7 +S -, -1 +1 +2 +3 -, -1 +1 +2 +3 
-13 -12 -II +11 +12 -8 -7 - 6 +6 +7 -3 -2 -I +1 +2 -3 -2 -1 + 1 +2 
-14 -13 -12 -11 +11 +, -8 -1 -6 +6 -4 -3 -2 -1 +1 -. -3 -, -1 +1 
-15 -14 -13 -12 -11 -to -9 -8 -1 -6 -5 -4. -3 -2 -1 -5 -. -3 -2 -1 

The first row of the matrix is written in bold type and the law of mapping (2) is verified for all 
matrix elements. 

Conclusion 

Consequent application of the subsectional basis function approach of the Method of Moments La 

the Mixed Potential Integral Equation yields a simple algorithm which reduces the computational 
storage of the MoM-matrix to a minimum. Applying a procedure of mapping (2) it is possible to set 
up a matrix containing only one row. Thus the information of a quadratic N x N matrix requires 
only the storage of a 1 x N matrix. For a 103 X 103 ma.trix, for example, this represents a reduction 
in storage by three orders of magnitude. That is clearly the minimum storage to be needed. 
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