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Abstract. A general approach is presented for estimating uncertainties in far-field parameters ob-
tained from spherical near-field antenna measurements. The error is approximately bounded in terms of
the uncertainty of the probe’s receiving pattern and the uncertainty in the near-field coupling over the
mutually subtended solid angle. We give some specific examples, including a discussion on estimating
uncertainty due to multiple reflections between probe and test antenna.

1. Introduction.
Uncertainty analysis for spherical near-field measurements is an on-going topic of research [1], [2], [3],

[4]. Previous work has relied heavily on simulation studies; however, we seek a more analytic approach
following [5] and [6].

In near- to far-field transformation, the far-field error in a given direction depends on errors in near-
field measurements over a surface and in the receiving pattern of the probe. In contrast, error in a far-field
measurement depends only on measurement errors in the direction of interest and in the on-axis gain and
polarization of the probe. In this discussion we consider the nonlocal propagation of uncertainty in near-
field spherical scanning. Our formulation reduces to a direction-by-direction analysis as the separation
of probe and test antenna increases.

2. Near-Field Spherical Scanning Summarized.
Here we present a brief synopsis of near-field spherical scanning theory. A complete discussion may

be found in [1].
The far-field radiation of an antenna can be characterized by

E (r) ∼
r→∞ t (r̂)

exp (ikr)

ikr
a0. (1)

This formula embodies the linear relationship between the radiated electric field E (r) and the excitation
a0. The transmission function t (r̂) may be expanded as

t (r̂) =
NX
n=1

nX
m=−n

£
t1nmXnm (r̂) + t2nmYnm (r̂)

¤
, (2)

where Xnm and Ynm = îr×Xnm are vector spherical harmonics [7, chapter 16], which depend only on
direction, and tnm are (unknown) modal coefficients.

In near-field spherical scanning, the antenna under test (AUT) is characterized by measurement with
a probe that moves over a spherical surface enclosing the AUT. The response of the probe depends on the
measurement radius r, the position specified by the spherical coordinate angles θ and ϕ, and the rotation
angle χ about the probe axis. To simplify the collection and processing of measurement data, we follow
common practice [1] and restrict our attention to special µ = ±1 probes. For these probes, we can define
a measurement vector that also may be expanded in spherical harmonics:

w (r) =
NX
nm

£
T 1nm (r)Xnm (r̂) + T 2nm (r)Ynm (r̂)

¤
. (3)

The summation, which has the same limits as in (2), is written in abbreviated form here and below.
Determination of w (r) requires two measurements at each probe location, which is reasonable in view
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of the polarization of electromagnetic fields. The relationship between the (known) Tnm and the tnm is
given by the probe-correction equations⎛⎝ T 1nm

T 2nm

⎞⎠ =Mn

⎛⎝ t1nm

t2nm

⎞⎠ . (4)

MatricesMn are functions of s, the known receiving function of the probe.

3. RMS Uncertainties in Near-Field Measurements.
According to [8], the uncertainty in the calculated transmission function is

u2t (r̂) = α2u2w (r) + τ2β2 ktk2Ω(r̂) u2s (ẑ) (5)

with

τ2 = 2. (6)

The norm kfkΩ(r) is the root mean square (RMS) value of f (rr̂0) over the solid angle Ω (r):

kfk2Ω(r) =
1

Ω (r)

Z
Ω(r)

kf (r0)k2 dr̂0. (7)

Following Yaghjian [9], we assume that the probe and test antenna interact mainly through the mutually
subtended “sheaf of angles” Ω (r) (see Figure 1). The uncertainties in (5) are to be interpreted as bounds
for RMS errors in w, s and t; that is,

uw (r) ' kδwkΩ(r) , us (ẑ) ' kδskΩ(ẑ) , ut (r̂) ' kδtkΩ(r̂) . (8)

Finally,

α (r) ≡ max
1≤n≤N

°°M−1n °°
2
, (9)

and β is either β1 or β2:

β1 (r) ≡
2π

ktk4π

vuut 1

4π

NX
nm

ξ2n
°°M−1n °°2

2

³
|t1nm|2 + |t2nm|2

´
(10)

β2 (r) ≡ 2π max
1≤n≤N

¡
ξn
°°M−1n °°

2

¢
, β1 ≤ β2. (11)

Formulas forMn and ξn are given in [8, equations (5) and (59)]. Equations 10-11 are improvements over
the estimate for β found in [8].

r̂



Fig. 1. The sheaf of angles.
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As the separation between test antenna and probe increases (and Ω decreases), differences between
distributed and local errors disappear (since kfkΩ(r) → kf (r)k) and (5) reduces to a direction-by-direction
far-field uncertainty formula with

α ∼
r→∞

r/λ

ks (ẑ)k , β ∼
r→∞

1

ks (ẑ)k . (12)

In the standard far-field uncertainty analysis

τ2 = 1 +

q
1− |t (r) · t (r)| / kt (r)k2. (13)

The value τ2 = 2, which corresponds to a circularly polarized test antenna, yields a worst-case bound
that depends only on the magnitude (and not the polarization) of t (r̂).

4. Example.
Parameters α, β1, and β2, defined in (9)—(11), can be calculated readily from available information.

Using (5), the uncertainty ut (r̂) in the test antenna transmitting function can then be computed from
the bounds uw (r) for the near-field measurement error and us (ẑ) for the probe pattern error. Figure
2 shows examples of such calculations. In this figure, we use an AUT with mode limit N = 50 and a
directivity of 30 dB (based on measurements of a Ku-band dish). The probe is a simulated maximum-
directivity antenna with mode limit NP = 3 and a directivity of 12 dB. The far-field separation is about
kr = 4N2/π = 3200. It is interesting that the far-field formulas (12) give good estimates for α and β
throughout much of the radiating near-field region.

5. Estimating Multiple-Reflection Uncertainty.
Multiple reflections between the probe and test antenna have long been recognized as an important

source of errors in near-field measurements [1], [5]. The separation between the probe and test antenna
will change by λ/4 in going from a maximum (where the direct and first-order reflected signals add in
phase) to a minimum (where they add out of phase). A simple method for estimating uncertainties due
to multiple reflections between the test antenna and probe in near-field spherical-scanning measurements
was described in [10]. To estimate uncertainties in far-field parameters, we measure the test antenna by
scanning the probe over two spheres whose radii differ by a quarter wavelength (λ/4).

To test our idea, we measured a 60 cm diameter Cassegrain dish at 16 GHz over two concentric
spheres–the first with a measurement radius of 151.5 cm and the second with a measurement radius of
λ/4 ≈ 0.5 cm greater than the first. For the 151.5 cm measurement radius data, the antenna directivity
was 36.13 dB. For the 152 cm measurement radius data, the directivity was 36.07 dB. Without multiple
reflections, the uncertainty in the directivity is ±0.02 dB and is due primarily to drift and noise. Fig-
ure 3 shows cuts of the co-polarization and cross-polarization far-field patterns, respectively. We also
determined the RMS value of the differences for the entire pattern. Relative to the pattern peak, these
are
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Fig. 2. The vertical dashed lines indicate the approximate contact separation kr = N +NP . The remaining dashed
lines are the far-field asymptotes (12)
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θ component: −59 dB
φ component: −54 dB
Total pattern: −53 dB.

This method is similar to one currently employed at NIST in estimating multiple-reflection effects in
planar-near-field measurements.

6. Conclusion.
We have laid a foundation for future development of an uncertainty analysis for spherical near-field

scanning measurements. This analysis divides neatly into terms due to uncertainties in the probe prop-
erties and to uncertainties in the near-field measurements. We expect the spherical near-field uncertainty
analysis to approach the well-known far-field uncertainty analysis as the measurement radius increases.
We have also presented a method for estimating uncertainties due to multiple reflections between the
probe and test antenna.
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Fig. 3. The φ = 90◦ cut of the far-field pattern from measurements at a radius of 151.5 cm (solid line) compared to
the difference between the far-field patterns from measurements at 151.5 cm and 152 cm (dashed line).

- 276 -


