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Abstract

Phased array antennas must scan a wide range of space and
find the proper direction to send/receive the allocated data. It
is desired to find the user directions and also interferer
directions to aim the main beam of the array into the desired
user and place nulls along interferer directions. There is
always a trade off between the number and size of elements
and the pattern beamwidth. This article shows how high order
roots of array factor can assist in narrowing the overall
beamwidth.

For this purpose a computer program was writlen in
MATLAB and the simulation results is included.

1. INTRODUCTION

In studying the pattern of arrays, generally the far field
pattern is interested. So, to design a planar array, the far-field
pattern and formulation should be summarized, According to
[1] the pattern of an array can be expressed as:
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This is a basic rule in array patterns. According to this rule,
very simple dipoles placed in some geometry, can form an
arbitrary pattern. Therefore a desired pattern can be achieved
by placing these clements in a proper geometry and feed them
with required current. The array factor depends on the current
feed of elements and also the way these dipoles have been
placed together. To achieve desired pattern with a phased
array, the array factor should be configured. The relation
between the array factor and designing parameters like
spacing, geometry and ... is discussed in the following
sections and it will be shown how these parameters can affect
the entire pattern.
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2. FORMULATION

2.1. Uniform Linear array

Referring to geometry of Figure (1) let us assume that all the
clements have identical amplitudes but each succeeding
element has a 3 progressive phase lead current excitation
relative to the preceding one (ﬁ represent the phase by
which the current in each element leads the current of the
preceding element). The elements are positioned along the z-
axis.

-

H\
Y

Fig. 1: Uniform Linear array geometry

An array shown in Figure (1) is called "uniform array” as it is
equally-spaced and has identical elements with identical
amplitudes and equal progressive phase. For this array, the
array factor is given by:
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Where:
W = kd cos @ + £ and k is the wavenumber.

2.2 Planar array

In addition to placing elements along a line (to form a linear
array), individual radiators can be positioned along a
rectangular grid to form a rectangular or planar array. Planar
arrays provide additional variables which can be used to
control and shape the pattern of array. One of the most
precious [eatures that this new array type provides is the
ability to scan the main beam of antenna toward any points of
space.

zZ
A

N Y
Q’f g
» 3
\( -
1
™
(a) Linear array
X
z
A
»Y

(b) Planar array

Fig. 2 : Linear and Planar array geometry

To derive the array factor for a planar array, refer to Figure
(2), when M elements are initially placed along the x-axis, as
shown in figure (2.a), its array factor can be written according
to equation (3):

M
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Where [, ,
spacing and progressive phase shift between the elements

1s the excitation coefficient of each element. The

along the x-axis are represented respectively, by d_ and 3. .
If N such arrays are placed next to cach other in the y-
direction, a distance dv apart and with progressive phase

B, . arectangular array will be formed as shown in figure

(2.b) and so the entire array factor can be written as:
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Or:
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3. SCHELKUNOV METHOD FOR ARRAY DESIGN
3.1 Uniform linear arrays:

One of the methods that can be exploited to design a phased
array is Schelkunov circle [2], [4]. A synthesis procedure
developed by Schelkunov makes use of the polynomial form
of the array factor and presents an insightful technique for
pencil-beam pattern synthesis. The array factor of equation
(3) for a one-dimensional array can be written in the form of a
polynomial in the complex variable z, where

N
F(z)=) a" ©)
n=l

Where:

o flkdcos#)
z=e

With excitation coefficients @, at each element,
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Fig. 3: Geometric representation of the roots of the Schelkunov polynomial

This form is a polynomial of degree N — 1, where N is the
number of elements in the array. Since the polynomial is of
degree (N — 1), it has (N — 1) zeros and may be factored as:

ﬁ(;) =dy, (Z - )(Z — 4 ) t (f:' _4:_',1\-;1)

Where the terms 2, , are the complex roots of the polynomial

(10)

(as yet unspecified).
The magnitude of the array factor is thus:
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In this application the roots have the form of z, = e’***%
so they all occur on the unit circle shown in Figure (3). The
magnitude of the array factor, as observed from any point on
the unit circle, is the product of the lengths of the straight
segments joining that point to the zeros of the array factor.

3.2 Planar arrays:

For planar arrays the procedure is the same. When there are
M elements along the x-axis and N elements along the y-axis,
we can set (M-1) nulls in x-direction and (N-1) nulls in y-
direction. The array factor of equation (4) splits into the form
of equation (5) and then the nulls will be dedicated to each of
these linear arrays. After dedicating the nulls to the arrays, the
roots can be simply calculated via following equations:

For roots #m from (M-1) roots of x-directed array:
— ej(kd‘sin&"cns;&m]

-
Lxm

(12)

For roots #n from (N-1) roots of y-directed array:
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So the array factor polynomial can be written as:
N

M
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It should be noted that the roots might be complex numbers,
So the coefficients of the AF polynomial might also be
complex.

The array factor of x and y directed arrays can be writlen as:
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And the entire array factlor is:
AF = AF,x AFy (17)

By comparing equations (5) and (14) the current of each
element can be written as:
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4. DESIGNING PROCEDURE:

In smart antennas and phase array applications it is interested
to steer the main beam of the antenna into a desirable location
and place nulls in directions of interferes. For that, designing
parameters should first be listed:

1- Nulls location

2- Direction of desired user

3- Number (and size) of elements

4- Frequency
After retrieving locations of all the required nulls, they should
be divided into (M-1) nulls for x-directed and (N-1) nulls for
y-directed arrays. From equations (12) and (13) the roots will
be calculated and inserted into equation (14). Then according
to (18) the elements’ currents will be calculated.
Steering the main beam into the desired angle is the only
thing that has left in this design. To maximize the AF in a
desired direction, we should derive equations (7), (8) with

respect to & and@. When [/

array will maximize when these conditions are satisfied
simultaneously:

kd sin@cosg+ f =0
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That results:
B, =—kd_sinfcos¢
B, =—kd, sin@sin ¢

(20)

One of the big concerns in phased arrays designing is the
beamwidth and side lobe level of designed antenna that
usually exceeds the required threshold. As mentioned in [17 it

is useful to define a € 4 angle that shows the beamwidth in

the 3D space. The £, is defined as:

Q,=0,xY¥,
Where:
®, is the elevation plane half-power beamwidth that can be

(21)

approximately expressed with:

1
O, = (22)
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Where @, represents the half power beamwidth of a
broadside linear array of M elements. Similarly, @ g

represents the half power beamwidth of a broadside array of
N elements. And for square arrays as ®1:D = @_to, the above

equation can be simplified to:

0,=0,secl, =0 sech,

Similarly the half power beamwidth*¥, , in the plane that is

(23)

perpendicular to the ¢' = @, elevation is given by:

|
\P.i; = =2 .2 -7 2 (24)
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And for square arrays, this will be reduced to:
\Pﬂ = ®_\‘U = G)xU (25)
So for a square array the £, can be expressed with:
Q, =0 xsech, (26)

Where:
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In this new method it has been shown that using a typical
NxN array with (N-1) second order roots comparing to a NxN
array with 2N-2 single roots has much better beamwidth. The
results are compared with computed results of the written
MATLARB program in the following section.

5. EXAMPLES AND RESULTS

For better understanding of this method a numerical example
is included. Designing parameters are:
1- Square array with 5x5 elements

2- Element spacing: d, =d, =0.654
3- Frequency: 2.5 GHz
6=30

¢ =60

4-desired direction:

5-null locations (in degree) (6 ,¢ ):
(-20,0),(-45,0).(20,0),(45,0),(-20,70),(-45,70),(20,70),(45,70)
Using the MATLAB program and entering the above data
calculates the coefficients of x-directed array as;

a=0.6290 a,=1.0000 a,=0.8365 ay=1.0000

a5 =0.6290

And for y-directed array:
a;,=0.7639 a,,=1.0000
a5,=0.7639

Figure (4) shows the 3D array factor. The 3D power gain plot
is also represented in Figure (5).the 213 polar plot of array

a3,=0.8180 a4,=1.0000

factor in planes @ =30 and @ =60 is shown in Figures
(6) and (7).

40 piot ot arsy tactar

Fig. 4: 3D array factor for single roots

B0 power Gain plotinetz, pniy

Fig. 5: Power Gain Plot
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0 Referring to Figure (8), in the designed array the nulls are
exactly positioned in their proper place.

Repeating above parameters with a 10x10 array that has the
same nulls but with second order roots, results:

@, =13
¥, =25

i
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Fig. 6: polar plot of AF in the phi=60 plane I

Fig. 10: polar plot of AF with second order roots in the phi=60 plane
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Fig. 8: nulls position of designed AF in phi=0 plane
Analyzing the array factor data show that:
0, =20
¥, =34

Fig. 11: polar plot of AF with second order roots in the theta=30 plane
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The Figures (9), (10), (11) show different plots of the array
factor with second order roots.

Repeating these parameters with a 15x15 array that has the
same nulls but with third order roots, results:

30 power Gain plot(theta, phi)

Fig. 12: Power Gain Plot for AF with third order roots

The power gain plot is presented in Figure (12), in addition to
narrowing the main beamwidth it is obvious that the side lob
levels have been also decreased significantly. (Compared to
Figure (5))

6. CONCLUSION

Using high order roots in synthesizing array factor results in
better beamwidth and side lob levels. In order to prove this
hypothesis, numerical results are presented. For that, merging
close nulls and making second (or higher) order roots for AF
polynomial is suggested. Given results for synthesized AF
have at least 10% better beamwidth (£2,) compared to
graphs of the same array (in number of elements, frequency
and spacing) depicted in [3]. On the other hand, it should be
noted that this method is less effective in narrowing the main
beamwidth nearg = % , due to the fact that the phased arrays

have an inherent characteristic that its beamwidth is
proportional to  sec @ (see equation (22)) which makes the

beamwidth to be widen when & gets close to % . It seems

that other geometries (like spherical) provides better results

near 5:%.
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