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1. Abstract. We study the E-polarized beam wave scattering by finite-size cylindrical reflectors to model 
quasioptical antennas. The incident complex-source-point (CSP) field simulates a beam generated by a flat 
aperture feed. Numerical solution is obtained from the singular integral equation (SIE) discretized by using new 
quadrature formulas of interpolation type with nodes in the nulls of the Chebyshev polynomials.  

 
2. Introduction 

Curved metallic reflectors have been studied as quasioptical antennas able to provide very high directivity [1]. 
Here, basic shape is parabolic one due to the well-known property of collimating the incident beam of a small 
horn placed to the geometrical focus of parabola. Electromagnetic modeling of reflectors is usually done with 
“quasioptical” methods, the main being Geometrical and Physical Optics supplemented with Geometrical and 
Uniform Theories of Diffraction [2,3]. However, these methods are based on the ray tracing and fail to 
characterize wave effects and resonances. For a more accurate modeling full-wave methods are mandatory, 
however, popular today Finite-Element and Finite-Difference field solvers require prohibitively large computer 
resources when applied even to a single - larger than 10-wavelength - reflector in open domain.  

All this shows that economic and reliable tools for the modeling of reflector-type scatterers are still in demand. 
A general way to build such tools is to use the IE approach. Here, the crucial point is development of an efficient 
discrete model, i.e. a fast and convergent numerical algorithm having controlled accuracy. Here, discrete models 
based on the analytical preconditioning, i.e. conversion of a singular IE for the surface current function to a 
Fredholm second kind matrix equation are known [4-5]. We present here the basic ideas of another efficient 
discrete model based on the Method of Discrete Singularities (MDS) [7-8], and review the results of accurate 
modeling of quasioptical reflector antennas and waveguides. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Geometry of a 
Cassegrain parabolic 
reflector with hyperbolic 
subreflector, front-fed by 
a CSP feed 

3. Problem formulation  
The geometry of a generic 2-D two-reflector structure can be seen in Fig. 1. Reflectors are assumed to be 

perfectly electrically conducting (PEC) and have zero thickness. The feed is a line current placed at the complex-
valued source point and has time dependence given by . This factor will be omitted in the analysis. Then 
the field generated by such a CSP feed can be characterized by the z-component of the electric field, which is 
given by 
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where . Function (1) is a rigorous solution to the Helmholtz equation. It can be shown that (1) 
simulates a beam wave [6], as it has the maximum oriented in the direction  for any r. Besides, it has two 

branch points at , thus to single out a unique value of U x  one has to join them with 

a branch cut B of the length 2b in the real space that does not intersect the contours of reflectors, . This cut 
can be considered as a model of the aperture of a real horn feed, whose radiation field is simulated by the CSP 
field. Fig. 2 shows sample near fields of such feeds. Note that the greater kb, the narrower the CSP beam and the 
further the distance of significant field intensity. 
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The field (1) is taken as the incident one, thus the total filed is a 
sum, , where U x  is the secondary field 
scattered by the reflector. At first we study the scattering of a 2-D 
beam-like E-polarized wave (1) by a single curved PEC strip as 
electromagnetic boundary-value problem. It requests U to solve 
the Helmholtz equation off L and satisfy (a) the PEC boundary 
condition on L, (b) the edge condition at endpoints of L , and (c) 
the radiation condition. This problem is reduced to one singular IE 
of the first kind for the currents induced on the strip j(s): 
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Applying contour parameterization x(t), y(t) and transforming SIE 
(2) to another, Cauchy-singular IE with a supplementary condition 

brings us to  

 

 
 

Fig.2 Near fields of CSP feeds having parameters 
and  kb as indicated / 3, , 5 / 3β π π π=
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Here K, M, f are smooth functions, c is a known constant, and v(t) is the new smooth unknown function. IE (3) 

is further discretized by using the quadrature formulas of interpolation type with the nodes in the nulls of the 
Chebyshev polynomials of the first kind: ( )[ ]cos 2 1 2n
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The solution of this set yields the desired surface-current function v(t), which can be further used in numerical 

reflector modeling. This method of numerical solution is a new one, developed recently [7,8]. It enables us to 
study the wave propagation and scattering for reflector antennas and beam waveguides with high accuracy. Near 
and far field patterns, efficiency of power transmission, and losses can be readily computed for various 
reflectors, feed locations, and beam widths.  
 
4. Numerical results. Far and near fields of symmetric parabolic reflector 

Consider a single front-fed parabolic reflector illuminated by a CSP feed. Here, reflector’s contour is 
, and the feed aperture center is placed at the geometrical focus of 

parabola, i.e. at (x
{ 2 2
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0,y0)= ( , (Fig. 3)  
 

 
 

Fig.3 Geometry of a parabolic reflector front-fed by a CSP feed 
 

Fig.4 Far-field RPs of antenna shown in Fig. 3 with β = π 
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The radiation patterns (RP) for several 
different values of kb are shown in Fig. 4 for 
the reflector whose aperture is . One 
can witness the main reflected beam and two 
symmetric spillovers, which get lower when 
the edge illumination is reduced. Here, the 
width of the main beam stays the same as it is 
determined primarily by the electrical size of 
reflector. In Fig. 5, one can see the near-field 
portraits of reflectors fed by different-kb feeds. 
Here, edge illuminations are –6 dB and –21 
dB, respectively. 

30d λ=

 
Fig. 5  Near fields for a reflector fed by a CSP having 

(left) and (right),  β = π. 
10d λ=

kb1.5kb = 6=

 
Far and near fields of offset parabolic reflector 

The following example is an offset reflector fed by a CSP feed (see Fig. 6). The radiation patterns (RP) for 
several different values of kb are shown in Fig. 7 for the reflector whose aperture is . Unlike a front 
illumination case, here one can see the main beam and two non-symmetric spillover lobes. 
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Fig. 6  Geometry of offset parabolic reflector antenna.  
  

Fig.7  Far-field RPs of antenna shown in Fig. 6.  7 / 9β π=

 
Fig. 8 demonstrates the capabilities of the 

modeling of electrically large reflector 
antenna with MDS-based numerical 
algorithm. Here, offset reflector has the 
aperture of that is clearly in the 
quasioptical domain. Accurate reconstruction 
of the near field reveals an amazing 
interference pattern of several types of waves. 
“Searchlight” main beam is well visible in the 
specular direction, while the other waves are 
apparently scattered by two differently 
illuminated edges. 
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Fig.8 Near field for a quasioptical reflector antenna. 

 47 , 11, 7 / 9d kbλ β= = = π

Near field focusing with elliptic reflectors 
Consider now a single elliptic reflector, whose contour is , 

and a CSP feed placed is in the geometrical focus F
{ }2

1 2

2 2
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1  (Fig. 9). This geometry is interesting for the near-field 
focusing applications such as mm-wave plasma heating and microwave laser pumping. Fig.10 illustrates how the 
reflected rays gather at the other focus F2. 

 
Fig. 9 Geometry of elliptic reflector fed by a CSP feed. 

 
Fig.10  Near fields of half-ellipse focusers having  d=14λ,  kb=0.5  

(left) and  d=30λ,  kb=2 (right). 
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Next are some offset elliptic reflectors showing examples of the focusing for the various  and kb values. In 
each case, the focusing in the other focus is seen clearly (Figs. 11 and 12) and can be accurately quantified if a 
numerical optimization is desired. 

/d λ

 

  
 

Fig. 11 Near fields of single offset focusers. Quarter-ellipse with  
d=12.5λ,  kb=2 (left) and 1/6-ellipse with d=9λ,  kb=2 (right). 
 

 
 

Fig. 12 Near fields of single offset focusers. 1/6-ellipse with  
d=46λ,  kb=10 (left) and 1/12-ellipse with d=20λ,  kb=10 (right). 
 

 
Consider now a cassegrain reflector antenna case shown in 

Fig. 1. The simulation of two-reflector structure (parabolic 
L1 and hyperbolic L2) leads to the pair of coupled SIEs. After 
applying the MDS discretization, we get a block-matrix 
equation, which has the same properties as the matrix 
equation for a single reflector. Fig. 13 shows the near field 
for sample cassegrain geometry front-fed with CSP. 
 
5. Conclusions  

The main advantage of the presented numerical method 
based on MDS is that it enables one to compute 2-D models 
of real-life reflector antennas of arbitrary shape mostly in 
minutes, with desired accuracy. For very moderate 
computing resources, even household, like for example 
1.2GHz, AMD Athlon desktop computer with 256Mb RAM, 
the time for computing the near field of a d=100λ single-
reflector is approximately 7-10 minutes and can be greatly 
reduced on more powerful modern multi-processor computer 
facilities. Thus, the electromagnetic performance of reflector 
antennas and beam waveguides can be controlled by drawing 
and analyzing the field patterns, directivity plots, etc., for a multitude of parameters like kb, d/λ , x0, etc. 
Analogous method has been developed for the H-polarization case in 2-D as well. Besides, MDS has a potential 
to be extended to the 3-D reflectors, at least rotationally symmetric ones. Finally, it is relatively straightforward 
to modify it for imperfect reflectors, either impedance, dielectric, or resistive. Due to a lucky combination of 
high efficiency and controlled accuracy, the method can be used as a core of the computer optimization software 
based on the gradient-type approach or on the genetic-algorithm one. 

 
 

Fig. 13 Near field of a cassegrain antenna with kb=9, 
d1/λ=100, d2/λ=20, f1/d1=0.5, β=0. 
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