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Abstract— This paper presents the adaptive integral
method (AIM) to analyse electrically large antennas. The
arbitrarily shaped perfectly conducting surfaces are mod-
elled using triangular patches and use electric field integral
equation to find the radiation pattern. Method of moments
(MoM) will be used to discretize the integral equations and
the resultant matrix system will be solved by iterative solver
with AIM. Radiation pattern of parabolic reflectors and X-
band horn are computed using the proposed method.
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I. Introduction

HIGH frequency methods such as Physical Optics and
Physical Theory of Diffraction have been used to anal-

yse the reflector antenna and horn antenna. However, the
high frequency methods cannot give the accurate approx-
imation to the entire radiation pattern. In order to pre-
dict the radiation pattern accurately, one can formulate the
problem using integral equation and solve it using method
of moment (MoM) [1]. MoM converts the integral equa-
tion to a system of linear equations which can be solved by
using a direct solver or an iterative solver.

The direct solver requires O(N3) operations to solve the
matrix equation while an iterative solver needs only O(N2)
operations for the matrix-vector multiplication in each it-
eration. The memory requirement for these two solvers
is in the order O(N2). Such computation complexity and
memory requirement are too expensive to solve a radia-
tion problem of electrically large antenna. However, sev-
eral fast algorithms, such as fast multipole method (FMM)
[2,3], adaptive integral method (AIM) [4,5] and its variant,
precorrected-FFT (P-FFT) [6], have been proposed to re-
duce the memory requirement of storage and to speed up
the matrix-vector multiplication in the iterative solver.

In this paper, the AIM will be applied for computing
the radiation problem of electrically large antennas. We
will give the formulation of the integral equation for a per-
fectly conducting object, a brief description of AIM and
numerical results to demonstrate its capability.

II. Formulation

A. Method of Moments

To analyze the radiation problem of an open struc-
ture like reflector antenna, electric field integral equation

(EFIE) would be used. Consider the tangential component
of the electric field on the surface of perfectly conducting
object, we can obtain

n̂ × Einc = n̂ ×
{
−jωµA +

1
jωε

∇∇ · A
}

, (1)

where the ω, ε and µ are angular frequency, free space
permittivity and free space permeability, respectively. A
is the vector magnetic potential which is given by

A =
∫

J
e−jk|r−r′|
|r − r′| dS′, (2)

where J and k are the induced surface current and free
space wave number respectively.

The geometry of the structure is modelled using triangu-
lar patches. The Rao-Wilton-Glisson (RWG) vector basis
function [7], which defined on a pair of triangular patches,
is used to expand the electric current and to discretize the
integral equation. We apply Galerkin’s scheme to test the
equation and thus convert it to a system of linear equations

ZI = V , (3)

where Z, V and I are impedance matrix, excitation vector
and coefficients of induced current, respectively. The ele-
ment in the impedance matrix Z is given by the following:

Zmn =
1

jωε

∫
fm ·

∫ (
k2 + ∇′∇′·)fn

e−jk|r−r′|
|r − r′| dS′dS,

(4)
where fn denotes the RWG vector basis function.

B. Adaptive Integral Method

The memory requirement and computational complexity
of the MoM are O(N2) and O(N3) respectively if a direct
solver is used to solve the matrix equation. The compu-
tation cost is prohibitively expensive for solving problems
with a large number of unknowns. The AIM was proposed
to reduce the memory requirement and to accelerate the
matrix-vector multiplication in an iterative solver. The ba-
sic idea of AIM is to split the matrix-vector multiplication
into two parts, i.e.

ZI = ZnearI + ZfarI, (5)
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where ZnearI and ZfarI represent near-zone interaction
and far-zone interaction respectively. The far-zone interac-
tion is approximated using fast Fourier Transform (FFT)
while the near-zone interaction is computed directly using
the MoM.

To employ AIM, the object is enclosed in a rectangular
grid and then recursively subdivided into small rectangu-
lar grids. In order to use FFT to approximate the far-zone
interaction, we need to transform the RWG basis function,
fn to the Cartesian grids. We also note that the matrix el-
ements in Eq. (3) can be expressed as a linear combination
of the following form

Zmn =
∫

Tm

∫
Tn

ψm(r)g(r, r′)ψn(r′)dr′dr, (6)

where the transformation function, ψn(r) = {fn,∇ · fn} .
The transformation function, ψn(r) can be approximated
as a linear combination of Dirac delta functions,

ψn(r) ≈ ψ̂n(r) =
(M+1)3∑

u=1

Λnuδ(r − r′), (7)

where M is the expansion order and Λnu are the expan-
sion coefficients of ψn(r). Λnu can be determined using
multipole expansion [5], which is based on the criteria that
the coefficients Λnu produce the same multipole moments
of the original basis function. Once the transformation
function has been determined, the matrix elements can be
approximated as

Ẑmn =
(M+1)3∑

v=1

(M+1)3∑
u=1

Λmvg(rv − r′u)Λnu (8)

.
By using the transformation function, now we able to

compute the two components in the matrix-vector multi-
plication in Eq. (5) with

Zfar = ΛgΛT (9a)
Znear = ZMoM

nz − Zfar, (9b)

where ZMoM
nz is the matrix contains only the direct in-

teraction of neighbor elements and Λ represents the basis
transformation matrix of the elements. The matrix g is
Toeplitz, and this enable the use of FFT to compute the
3-D convolution in the Eq. (8) efficiently. Hence we can
represent the matrix-vector multiplication as

ZI = ZnearI + ZfarI

= ZnearI + ΛF−1
{
F {g} · F

{
ΛT I

}}
, (10)

where F {•} and F−1 {•} stand for FFT and inverse FFT,
respectively.

III. Numerical Results

In order to validate the accuracy of our code, we first
present the radar cross section of a perfectly conducting

(a) VV-polarization

(b) HH-polarization

Fig. 1. . Bistatic RCSs of a perfectly conducting sphere of radius 1
m at 0.9 GHz

sphere having radius of 3λ. The bistatic RCSs for VV-
and HH-polarizations are shown in Fig. 1. The results are
compared with Mie series solution and excellent agreements
are observed.

Next we consider a horn antenna with the aperture di-
mensions of 3λ× 4λ and height of 8.2λ. The horn antenna
is fed by a dipole antenna placed at the center of the waveg-
uide. The discretization of the horn antenna using trian-
gular patches resulting 15101 RWG basis functions. The
radiation patterns for E- and H-plane are shown in Fig. 2.
The results are compared with measurement data.

The third example we consider is a parabolic reflector
having a diameter of 5λ. The F/D ratio of the reflector is
0.375. The reflector is fed by a dipole backed by a circular
dish. The parabola reflector is modelled using triangu-
lar patches, and resulting 7157 RWG basis functions. The
computed E- and H-plane radiation patterns by the AIM
are shown in Fig. 3. The results are again compared with
the measurement data [8]. The induced surface current
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(b) H-plane

Fig. 2. Radiation patterns of a rectangular horn antenna.

density on the parabolic reflector is shown in Fig. 4
Lastly, we consider a rectangular horn-fed parabolic re-

flector with different F/D ratios. The parabolic reflector is
assumed to have the F/D ratios of 0.3, 0.375 and 0.4, and
their respective diameters are 21λ, 17λ and 16λ. The aper-
ture dimensions and height of the rectangular horn for feed-
ing are 1.2λ × 1.6λ and 3.5λ, respectively. The discretiza-
tion of these configurations results in 126948, 78975 and
69379 RWG basis functions, respectively. The computed
E- and H-plane radiation patterns are shown in Fig. 5 for
different F/D ratios.

Table 1 shows the comparison of memory requirements of
storage for the MoM and the AIM needed for the examples
2, 3 and 4. From Table 1, we can see that the memory
requirement of storage is reduced significantly by using the
AIM.
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Fig. 3. Radiation patterns of parabolic reflector.

Fig. 4. Induced surface current density on the parabolic reflector.
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Fig. 5. Radiation patterns of rectangular horn-fed parabolic reflector
with different F/D ratios.

TABLE I

Comparison of memory requirements of storage for MoM

and AIM

Example Unknowns MoM AIM

Fig. 2 15101 3.4 GB 21 MB

Fig. 3 7157 780 MB 9 MB

Fig. 5 69379 71.7 GB 98 MB

F/D = 0.4

Fig. 5 78975 92.9 GB 112 MB

F/D = 0.375

Fig. 5 126948 240.1 GB 190 MB

F/D = 0.3

Note: 1 MB = 1048576 bytes and 1 GB = 1024 MB

IV. Conclusion

In this paper, the AIM has been successfully imple-
mented to solve the radiation problem of electrically large-
sized reflector antennas and horn antennas and to analyze
their radiation characterizations. The problem is formu-
lated using the EFIE approach. Then, the MoM has been
used to discretize the integral equation and to convert it
into a matrix equation. The AIM is employed in the it-
erative solver to reduce the memory requirement and to
speed up the matrix-vector multiplication, so that large
scaled antenna radiation problems can be handled system-
atically and accurately by the approach. Numerical results
are presented to demonstrate the accuracy of the proposed
method and its broad applicability of the present approach.
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