PROCEEDINGS OF ISAP2000, FUKUOKA, JAPAN

EARTH-SPACE RAIN ATTENUATION MODEL
BASED ON EPNET-EVOLVED TIFICIAL
NEURAL NETWORK"

Hongwei Yang, Chen He, Hongwen Zhu, Wentao Song
Department of Electronic Engineering, Shanghai Jiao Tong University
1954 Hua-shan Road, Shanghai, 200030, China
Email hwyang60@hotmail.com

ABSTRACT

This paper presents a new rain attenuation model, i.e. EPNet-evolved artificial neural network (EPANN) model. EPNet is
used in this paper to evolve artificial neural networks that represent the nonlinear relation between rain attenuation and the
factors affecting attenuation due to rain. After lots of evolutionary processes, an optimal rain attenuation model based on
EPANN is established. The prediction of the model proposed in this paper is compared with that of the ANN model and
CCIR model. The results show that applying the EPNet to optimize the rain attenuation model makes a simpler and more
accurate model.
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1. INTRODUCTION

Attenuation due to rain becomes a very important problem on the communication system working at frequencies above
10GHz. To predict rain attenuation from known rain rate is therefore essential for design reliability and validity of
communication system. The prediction of rain attenuation is a very complex and difficult task. Generally, the prediction
models can be either theoretical (also called deterministic), or empirical (also called statistic), or a combination of these two.
The theoretical models are accurate, but usually require a great database of radio meteorology characteristics, which is nearly
impossible to obtain in most cases. The empirical models are easy to use while the accuracy is unsatisfactory. A compromise
is made by the methods of CCIR, Crane and so on, which are accurate in average as well as simple and therefore, main
approaches applied in communication engineering [1]. To improve accuracy of rain attenuation prediction further more,
many literatures corrected the existed models through using local experimental data [2-4], or promoted new models [5-8],
though most of these models can hardly obtain consistent accuracy over the global area. For many years, nearly all of these
models have been based on the corresponding relation between rainfall rate R, and rain attenuation rate y as y = aRph .

Unfortunately, rain attenuation is nonlinearly affected by several complex factors. Due to the assumptions in establishing rain
attenuation model based on the relation y = aRp” , there needful existed theoretical error in the models themselves and it is

hard to predict rain attenuation accurately with those models.

A new and effective rain attenuation model based on artificial neural network (ANN) was proposed firstly in our earlier study
[9], which showed that artificial neural network can obtain properly the nonlinear relation between the rain attenuation and
the composition of the other factors affecting rain attenuation, and therefore improve the accuracy of rain attenuation
prediction compared with other models such as CCIR model. However, because the earlier job used feedforward ANN and
backpropagation (BP) training algorithm which method is susceptible to trap in a local minimum of error function and only
investigates restricted topological subsets rather than the complete class of network architectures, the previous study might
just propose a good model of rain attenuation prediction but not an optimal.

Recently, research on combination of artificial neural networks (ANNs) and evolutionary search procedures, such as genetic
algorithm (GA), evolutionary programming (EP) and so on, has attracted a lot of attention. A prominent feature of the
combination is that ANNs evolve towards the fittest one in a task environment without outside interference and therefore
eliminate the tedious trial-and-error work of manually finding an optimal (fittest) [10]. Among several of evolutionary
systems, EPNet is basically the best candidate for evolving feedforward ANN [11]. This paper uses EPNet to evolve ANN
model of earth-space rain attenuation and proposes an optimal model based on EPNet-evolved artificial neural network
(EPANN), which model is simpler in architecture and more accurate in prediction than the latest rain attenuation ANN model.

In the following, section 2 introduces the algorithm using EPNet to evolve ANN. The architecture and realism of the rain
attenuation model based on EPANN are fully described in section 3. In section 4, EPANN model is evaluated as well as
compared with ANN model and CCIR model. Finally, section 5 summarizes the results of our study.

* The research reported in this paper is supported in part by the National Natural Science Fund of China (n0.69972028), in
part by the Science and Technology Development Fund of Shanghai (n0.98JC14008) and in part by Telecommunications
Advancement Organization (TAO) of Japan.
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2. EPNet

EPNet is a new evolutionary system for evolving feedforward ANN. It combines the architectural evolution with the weight
learning. The main steps of EPNet evolving ANN are introduced in [11]. The major problems and the methods to deal with
them in this paper are described as follows:

A.  Encoding Scheme for Feedforward ANN: Two equal size matrices and one vector are used as the direct encoding
scheme to represent ANN architecture and connection weights (including biases). One matrix is the connectivity matrix of
the ANN, whose entries can only be zero or one. The other is the corresponding weight matrix whose entries are real
numbers. The entries in the hidden node vector can be either one, i.e.. the node exists, or zero, i.c.. the node does not exist.

B.  Fitness Evaluation and Selection Mechanism: The fitness of each individual in EPNet is solely determined by an error
value defined by (1) over a validation set containing 7 patterns

E=ﬁz Z(K(r)—z,-(nf 0

where 7 is the number of output nodes, Y;(¢) and Z,(f) are actual and desired outputs of node i for pattern f. The

selection mechanism used in EPNet is rank-based. The (M — j) th individual is selected with probability

p(M —j)= jM (M is the population size.)
k

k=1

C. Replacement Strategy: In EPNet, if an offspring is obtained through further BP partial training, it always replaces its
parent. If an offspring is obtained through SA training, it replaces its parent only when it reduces its error significantly. If an
offspring is obtained through deleting nodes/connections, it replaces the worst individual in the population only when it is
better than the worst. If an offspring is obtained through adding nodes/connections, it always replaces the worst individual in
the population.

D. Hybrid Training: The only mutation for modifying ANN’s weights in EPNet is implemented by a hybrid-training
algorithm consisting of an MBP and an SA algorithm. During BP training, a simple heuristic is used to adjust the learning
rate for each ANN in the population and the error E is checked after every k epochs, where k is a parameter determined by

the user. If E decreases, the learning rate is increased by a predefined amount. Otherwise, the learning rate is reduced. In the
latter case, the new weights and error are discarded. The extra training is performed by an SA algorithm when BP training
can't improve the ANN. When the SA algorithm also fails to improve the ANN, four mutations will be used to change the
ANN architecture.

E.  Architecture Mutation:

Hidden Node Deletion: Certain hidden nodes are first deleted uniformly at random from a parent ANN. Then mutated ANN
is partially trained by the MBP.

Connection Deletion: Certain connections are selected probabilistically for deletion according to their importance. The
importance is defined by a significance test for the weight’s deviation from zero in the weight update process. Denote the

weight update A, (w) = —=A[dL, /dw,] by the local gradient of the linear error function L (L = z; Z:;l |K(t) -Z, (t)| )

with respect to example 7 and weight ¢, , the significance of the deviation of @, from zero is defined by the test variable

&

Where &, =w, +Aw, (W), &, denotes the average over the set &, ¢ =1, -+ T. Equation (2) can also be used for

test(w,) = @)

connections whose weights are zero, and thus can be used to determine which connections should be added in the addition
phase. Similar to the case of node deletion, the ANN will be partially trained by the MBP after certain connections have been
deleted from it. If the trained ANN is better than the worst ANN in the population, the worst ANN will be replaced by the
trained one and no further mutation will take place. Otherwise node/connection addition will be attempted.

Connection and Node Addition: Certain connections are added to a parent network probabilistically. They are selected from
those connections with zero weights. The added connections are initialized with small random weights. The new ANN will
be partially trained by the MBP and denoted as Offspring 1.

Node addition is implemented through splitting an existing hidden node. The nodes for splitting are selected uniformly at
random among all hidden nodes. Two nodes obtained by splitting an existing node i have the same connections as the
existing node. The weights of these new nodes have the following values

W=w=w,i2jw=(1+0w,, i<k;w,=-0w,, i<k

i
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Where @ is the weight vector of the existing node i, W' and @’ are the weight vectors of the new nodes, and @ is a
mutation parameter which may take either a fixed or random value. For training examples that were learned correctly by the
parent, the offspring needs little adjustment of its inherited weights during partial training.

The new ANN produced by node splitting is denoted as Offspring 2. After it is generated, it will also be partially trained by
the MBP. Then it has to compete with Offspring 1 for survival. The survived one will replace the worst ANN in the
population.

3. STRUCTURE AND REALISM OF THE RAIN ATTENUATION
MODEL BASED ON EPANN

A.  Inputs and output of ANN: The main factors affecting earth-space path rain attenuation are shown in Fig.1. Under the
consideration of the factors above, 8 inputs of ANN have been selected. One group of the inputs has been chosen to take into
account the effects of radio parameters on the rain attenuation, including frequency f (GHz), elevation angle 6 (degree)

and polarization angle { (degree). The second group of inputs

contains latitude Lat. (degree), longitude Log. (degree),

altitude £, (km) and height A_ (km) of the earth station, which

are intended for taking into account the terrain effects on the
attenuation due to rain. The last group of inputs is rainfall rate
R (mm/hour), which is the main meteorological factor affecting
rain attenuation. In fact, there are some other factors affecting
rain attenuation such as size distribution of raindrop [12-13].
Considering that it is very difficult to provide neural network
with proper information about size distribution, we don't choose
heifht them as inputs of neural network, but expect that neural

frequency

rain-fall rate -
T polarization anglé

- longitude and latitude e
elevation angle

of the earth station

network automatically learn and remember its effect on
attenuation due to rain from the meteorological and terrain
information of inputs, and then predict rain attenuation perfectly.

altitude
l B.  Rain Attenuation Data Set: The data set used for neural

network, which is from the CCIR data bank [14] and contains
most of the earth-space rain attenuation measurement data since
1972, has 2707 input/output pairs (one input/output pair
consists of 8 inputs and one output). This data set has been split
into three sets. The first set has been used for training neural network (called training set) by MBP, the second set (validation
set) used for evaluate the fitness of the ANN, and the last set (testing set) used for estimate the prediction performance of the
best ANN evolved by EPNet. 200 input/output pairs are chosen as testing set by randomly selecting them from the data set.
The other 2507 input/output pairs are partitioned into two parts, 1303 used for training set and 1204 used for validation set.
Input and output parameters are all rescaled linearly to between 0.1 to 0.9.

Fig.1 A slant path affected by rain attenuation

C. Experimental Setup: Most parameters used in the experiments were set as follows: the population size (30), the initial
connection density (1.0), the initial learning rate (0.25), the range of learning rate (0.1 to 0.7), the number of epochs for the
learning rate adaptation (5), the number of mutated hidden nodes (1), the number of mutated connections (1 to 3), the number
of temperatures in SA (5), and the number of iterations at each temperature (100). The number of hidden nodes for each
individual in the initial population was chosen from a uniform distribution within certain range of 10 to 35. The number of
epochs (K ) for training each individual in the initial population is determined by two parameters: the “stage” size and the

number of stages. A stage includes a certain number of epochs for MBP training. The two parameters mean that an ANN is
first trained for one stage. If the error of the network reduces, then another stage is executed, or else the training finishes. This
step can repeat up to the-number-of-stages times. The two parameters are 500 and three. The number of epochs ( K ) for each
partial training during evolution was determined in the same way as the above. The two parameters were 50 and 3. The
number of epochs for training the best individual on the combined training and testing data set was set to 2000. A run of
EPNet was terminated if the average error of the population had not decreased by more than a threshold value & (0.05) after
consecutive G, (10) generations. All the parameters above were chosen after some limited preliminary experiments.

Table 1: Architecture of EPANN Table 2: Comparison of Prediction Error of EPANN Model, ANN

Model and CCIR Model
Mean Std Div Min Max Model Mean(dB) Std Div(dB) Max(dB)
Number of generation 240.6 9.3 190 370 EPANN 1.28 1.72 3.69
Number of Connections 235.8 8.5 196 421 ANN 1.39 2.01 4.7
Number of Hidden Nodes 19.6 2.1 17 25 CCIR 1.98 2.70 7.4
Error on Training Set(dB) 2.358 0.541 2.177 2.794
Error on Testing Set(dB) 1.805 0.419 1.436 1.947

Table 1 shows the average results of EPNet over 30 runs. The error in the table refers is defined by (1). Comparing to the best
ANN with 14-14 hidden nodes proposed in the earlier study [9], ANNs evolved by EPNet are more accurate and simpler.
This demonstrates that unlike BP training algorithm, EPNet can often discover the optimal ANN. We choose the best among
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all of the ANNs evolved by EPNet and further train it using MBP on the combined training and validation set. The ANN
obtained after that is used as the final rain attenuation model (EPANN model).

4. PREDICTION OF EARTH-SPACE RAIN ATTENUATION

We compare EPANN model with ANN mode [9] and CCIR model

[15] over the same testing set not taken into account during the

evolving process. The prediction results are shown in Fig.2., in

) which "." represents the prediction result of EPANN model, "+"
A represents the prediction result of ANN model and "*" represents
By e e the prediction result of CCIR model. We can see from the figure
yaiks that the prediction results of EPANN model, ANN model and CCIR
20¢ Ty model are all close to the 45 degrees diagonal, but the results of the

35

30+

+ b % * first model is closest than the others, which means EPANN model
15+ +F %ﬁf’»ﬂ AT predicts rain attenuation most accurately.

%_j%* In order to evaluate the quality of the EPANN model obtained in
E #Hi this paper, we define the prediction error as the absolute value of
the difference between the measured and the predicted attenuation
value in the same condition. In engineering, such definition of
prediction error makes more sense than the definition in [9]. We
10 15 2 » 2 % compute the prediction error of the EPANN model and compare it
Rain Attenuation Prediction (dB) with the ANN model and the CCIR model and the results are shown
Fig2. The Comparison of ,P rediction of EPANN Model, ANN i Taple 2, where each of the models is tested over the same testing
Model and CCIR Model with Measurement set. It is easy to see from the table that the EPANN model showed

Rain Attenuation Measurement (dB)

satisfactory, even better accuracy.

5. CONCLUSION

A proper system design requires accurate and reliable radio channel model, of which the rain attenuation model is very
important. In this paper, a new rain attenuation model based on EPANN is presented. The model not only approximates
accurately the nonlinear relation between rain attenuation and other factors affecting rain attenuation, which overcomes some
important disadvantages of the traditional models, but also obtains simpler architecture and better generalization ability than
the BP-based ANN model proposed recently. The experimental results show that it is feasible to use EPANN to approximate
the rain attenuation model. In comparison with ANN model and CCIR model, the EPANN model showed the optimal
performance.
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