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1. Introduction 
 
 We have been developing a 2.4 GHz point-to-multipoint wireless communication system 
suitable for use inside mechatronics ICT (Information and Communication Technology) equipment 
to replace wire harnesses inside equipment with wireless communication as a useful technique of 
weight reduction and simplification of system assembling [1]. One of the critical problems of such 
applications is that antennas are installed close to metallic components or in a narrow gap between 
metallic housings and thus suffer degradation of antenna performance due to effects of the ambient 
environment. Therefore, in order to maintain desired antenna performance inside equipment, we 
need to understand the dependence of antenna characteristics on the ambient environment inside 
equipment and design antennas with a consideration of it. 

In this study, to simplify a problem, a circular microstrip antenna (MSA) in a narrow 
parallel-plate waveguide is considered as a model of a typical installation situation and a 
representative antenna. So far, we have formulated an analytical expression for the input impedance 
and have confirmed its validity through comparisons with measurement [2]. In addition to the input 
impedance, the resonant frequency must be predicted accurately because a MSA has a narrow 
bandwidth and is usually operated in the vicinity of the resonant frequency. Though, in [2], we have 
also shown the resonant frequencies, they have been calculated indirectly from the calculation 
results of the input impedance and their dependence on the parallel-plate waveguide has been not 
clear. From the antenna designer’s point of view, a design formula to calculate the resonant 
frequency directly is needed. In this paper, we therefore formulate an analytical expression for the 
resonant frequency and validate it through the comparison with measurement. 
 
2. Theory 
 
 Figure 1 shows a circular MSA in an infinite parallel-plate waveguide. The parallel-plate 
waveguide has a height d and is filled with the air whose permittivity and permeability are denoted 
by 0ε and 0μ , respectively. The circular MSA has a radius a  and is fed by a line current 0I  on the 
feed pin at the feed position )0,(),( 0ρφρ = . The dielectric substrate has a thickness h , a 
permittivity ε , and the same permeability as the air. 
2.1 Electric Field inside the Circular MSA [2] 
 When we assume that 1<<kh  where 0εμω=k  and ω  is the angular frequency, the 
field inside the circular MSA is uniform in the z  direction. The electric field due to the line current 

0I  is given by 
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1 He is now with Mitsubishi Electric Corporation. 
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where nJ  and )2(
nH  are the Bessel function of the first kind and the Hankel function, respectively. 

ijδ  is the Kronecker delta, namely 10 =nδ  for 0=n  and 00 =nδ  for 1≥n , and the superscript 

“ i ” indicates fields inside the antenna. snY  are the surface admittances at the side aperture. nJ ′  and 
′)2(

nH  are the derivatives of nJ  and )2(
nH  with respect to the argument ρk .  

The surface admittance of the circular MSA in a parallel-plate waveguide is given by 
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and 000 με=Y . 
2.2 Resonant Frequency 
 In order to obtain the resonant frequency of a circular MSA in a parallel-plate waveguide in 
an analytical form, we neglect the dielectric and conductor losses, because the contributions of these 
losses to the resonant frequency are small. Thus, the input impedance can be defined by [3] 
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where fS  is the surface on the feed pin and J  is the surface current on fS . The superscript “*” 

indicates the complex conjugate. Because iE  and J  are assumed to be uniform in the z direction, 
inZ  is given by 
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 Since the contribution of 1≠n  modes to the input impedance is negligibly small in the 
vicinity of the resonant frequency of the 1=n  mode, only the 1=n  term in Eq. (8) is evaluated 
here. We let a=0ρ  in Eq. (8) because the resonant frequency is almost independent of the feed 
position. In these conditions, Eq. (8) can be written as 
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where 0με=cY  and the arguments ka  of 1J  and 1J ′  are omitted for simplifying the notation. 

1sg  and 1sb  are the surface conductance and susceptance of the order 1=n , respectively. The 
resonant frequency, therefore, is determined by the real solution of the following equation: 

 0)()( 111 =′− kaJYkaJb cs . (10)
Equation (10) is numerically solved by using some iterative method to obtain the resonant 
frequency because bs1 is also a function of frequency. 

To obtain an approximate solution of Eq. (10), now we assume that bs1 is constant as a 
zeroth-order approximation, that is 

 01 bbs ≈  (11)
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where 0b  is a constant approximate surface susceptance. We next introduce the equivalent 
extension aΔ  to represent the variation of the resonant frequency. Thus, the resonant frequency can 
be calculated as 

 ( ) 0
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where 11x  is the first zero of )(1 xJ ′ . We assume that aa <<Δ , and use the following 
approximation: 
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1J  and 1J ′  in Eq. (10) are then expanded in a Taylor series around 11x  to first order as follows: 
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where 1J ′′  is the second order derivative of 1J . By substituting Eqs. (11), (14), and (15) into Eq. 
(10), the equivalent extension is obtained as 
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By using Eqs. (12) and (16), the resonant frequency in a parallel-plate waveguide can be easily 
predicted by the approximate surface susceptance 0b , which may be determined by 1sb  at the 

operating frequency or at the zeroth-order resonant frequency )0(
rf  [4] in a practical evaluation. 

 
3. Comparisons between Calculations and Measurements 
 
 Figure 2 shows the calculated and the measured resonant frequency of the antenna under 
test for 05.0 λ<d  where 0λ  is the wavelength in the air at the resonant frequency measured in the 
free space. In this calculation, 0b  in Eq. (16) is determined by the surface susceptance at the zeroth-

order resonant frequency )0(
rf . The antennas under test is printed on a dielectric substrate whose 

dielectric constant and δtan  are 2.6 and 0.0011, respectively. The antenna has a radius of 22.0 mm 
and a thickness of 0.964 mm ( 0008.0 λ ). The feed position 0ρ  is 4.9 mm. A good agreement 
between the calculated and the measured resonant frequency is observed. The relative errors of the 
calculated resonant frequency to the measured one are less than 1.1%. The calculated resonant 
frequencies, however, are always higher than the measured ones. This is due to the assumptions that 
the electric field inside the cavity is uniform in the z direction and the conducting patch is neglected 
in the formulation of the surface admittance [2]. 
 
4. Conclusions 
 
 For better understanding antenna properties in a narrow space such as inside mechatronics 
ICT equipment, a circular MSA in a narrow parallel-plate waveguide was theoretically studied. The 
resonant frequency was formulated in an analytical form, which couples the resonant frequency 
with the surface susceptance. In order to validate the presented expression, the calculated resonant 
frequency was compared with the experimental data. A good agreement between the calculation and 
the measurement was observed. The relative errors between them were less than 1.1% for the 
substrate thickness 0008.0 λ . 

By using the presented expression, we can easily evaluate and predict variations of the 
resonant frequency of a circular MSA in a parallel-plate waveguide. 
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Figure 1: Circular MSA in an infinite parallel-plate waveguide. (a) overview and (b) sideview. 
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Figure 2: Calculated and measured resonant frequency. 
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