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Cylindric antennas are widely used both for measuring electric
fields and as sensors for determining plasma parameters in
ionosphere. The impedance of a low frequency antenna is
determined not only by the parameters of ambient plasma but
also by an ionic shield (disturbed zone) near its surface.
The most correct treatment of this zone and of the electric
characteristics related to it for the cylindric electrode of
a large radius with a constant potential at their surface is
given in [1] . In the present paper an electric field in
the vicinity of a cylindric antenna of a large and a small
radii is found with regard to the particle absorption at the
surface. This effect is essential for the bodies whose size
exceeds the Debye length of plasma [2] or the bodies which
have a small surface potential. The results obtained are used
for the calculation of a static and a dynamic capacitances of
the antennas of such type.

Consider a cylindric antenna of radius 7T, and length e*'Z,,'D
(D=[T/4we*N,]1"* - is the Debye length of plasma) in
collisionless plasma. The particle distribution over
velocities of the non-disturbed plasma is set to be maxwellian
with concentration N, and temperature T . We shall assume
that at the antenna surface ell the electrons, having reached
the antenna, are absorbed, and the ions neutralized.

The near zone of an antenna can be described in a quasistatic
approximation. An electric field potential ( 1is defined in
this case by the Poisson equation which has "to be solved
together with kinetic equations for the distribution functions
of particles which determine their concentrations Nbe

Let us examine the case when the potential at the antenna
surface () 1is negative, and the frequency of its variation
w satisfies the condition W ,«w«aw,, ( Wy,,e are
plasma frequencies of ions and eiectrons). In this case the
electrons are repulsing particles in a quasistatic electric
field, and for their concentration far from the ends of the

antenna booms (their influence is neglected) we have [3]
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The alternating electric field does not affect the motion of
ions, therefore Nh; is determined by an expression similar
to that in the vicinity of a cylinder with a fixed surface
potential, which has a weak dependence on the magnitude of
this potential [4] . Therefore, assuming that |1€Q,\&T, n;
can be described by the expression for neutral particles with
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regard to their absorption at the surface
_ o e S 2
ni=N, /N, = 1-7aesing ' (@)

Now the protlem goes to the solution of the Poisson equation
which in terms of dimensionless variables has a form
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with boundary conditions \H'S"'i =Y, , k\(\,g_._;— 0.

In the cases, which are most important for practical
application when, ©,» D and %« D , the solution (3)
can be done via asymptotic methods.

For T, »D (the cylinder with & large radius) (3) is equation
with a small parameter proceding the highest derivative. Its
solution everywhere, where |d¢/d%| <« (2,/D) ¢ coincides with
the solution of a quasineutrality equation n,(%¥,0)=N(5,¥)
with precision to the small terms. Taking into account (1)
and (2) its solution is
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For ¥>» 1, by expanding (4) over ¢ and ‘g" , We have
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Near the antenna surface, in the region of a double sheath
whose thickness under our conditions is of the order of D ,
where derivative dy/dy is large, one needs to solve a
full equation (3).

By neglecting the antenna surface curvature in this region we
have that ne is determined by the expression (2) for ¥ = 1,
and n, = 1/2. Thus, for the potential in the double sheath
we have equation

d*¢/dg* = 5(§) | =Ny -n () (6)
with boundary conditions Ylz+o0=We , $|lr-e==V, , where \!
is solution (4) for ¥ =1, and §=(%-%)/D . In the

nonexplicit form thta solqution of this equation is
= (20 5(pdeldy .
4)

4 4
By matching the solutions obtained in the quasineutrality
domain quml and in the double sheath W4, ch. s that are
asymptotic expansion of the solution (3) in the corresponding
regions, we shall obtain a_solution equally suitable for any

values of the variable [5} . With precision to the terms of
the order of (D/Z.)* we have Y = Yauee* Vd.ch,"¥1 . A uniformly
suitable approximation in case of D/z, = 0.1 and Y, = 0,5

is demonstrated in Fig. 1. A dashed line is used +to indicate
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the solutions of equations (4)(curve 1) and (6) (curve 2).
A horizontal dashed line corresponds to the \llJ1 value,
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It should be noted, that such method permits to obtain the
solution (3) at any large %,/D ratios, having once
carried out simple calculations in the double sheath and the
quasineutrality domain at a given ),

For w,«4D (the cylinder of a small radius) we have a small
parameter in the right side of (3), and its solution can be
obtained via a method of composed equation. In this case the

expressions for M. , valid in the region of 22> D , should
be used for all % values, the same as for <D s Where
the potential derivatives are large, the form of n..e is

irrelevant. Taking into account that for 2>D the ",z and
(7 disturbances are small, a composed equation looks as

dal}:/dx* £ ! d /dx -§ =-@, /D) Yoo /X

where X= 'Z/D » We has been determined in (5). The solution

of this equation is
Do
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where X°='5o/]) ;].(X) and Ko(?‘) are modified Bessel functi-
ons [6] . The form of the field potential at Y, =0.5;%/D =
0.1 is shown in Fig.2. For 24D the main role in eq. (7
belongs to the first term which is shown in Fig.2 by a dashed
line. For 2»D ¢- Yoo /%

The calculation of the electric field at the antenna surface
permits to determine the magnitude of its capacitance. The
Gauss theorem provides a relation between surface charge
density 6 and field strength at the surface &, : 6= §./4w
For the staticand dynamic capacitance per surface unity we
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have then

Cyp = (4n)' € /8,72 /axD , 2§ Eo/Yo
0= (A7) " dE, /dg = Ry /haD |, Ry(Yo)=0dE./dY,.

The X st d dependences for the cylinder with a large
Tadius are shown in the Fig.3. For small potentials at the
antenna surface ¢, > O f,‘__E‘,=('JT/4-'1)"’z % " and for &g,d we
obtain ﬁ!sf%&xi:(n/ﬁ)" b/ ", Por the capacitance of the
cylinder with a small radius we have 25{’381:'8/2 ?.ru(‘Z,/D)

The results obtained can be used for interpreting the impedance
measurements of plasma parameters carried out employing the
antennas of such type.
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