PROCEEDINGS OF ISAP '92, SAPPORO, JAPAN
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Method for solving eigenvalue problems for a longitudinally
slitted open waveguide with arbitrary cross-section is
presented. Both TM and TE waves of elliptic and Cassini-oval
shaped waveguides are investigated numerically. Applications
of the treatment are seen in the simulation of leaky-wave
antennas and cavity-backed apertures.

FORMULATION OF THE PROBLEM

Hollow metal waveguide with zero-thickness and perfectly
conducting walls is considered whose cross-section is formed by
arbitrary and in general nonclosed contour L assumed to be a
part of some closed not-intersecting smooth curve 5. Since
waveguide is regular and infinite along z-axis, electromagnetic
field can be represented as a normal wave (mode)with dependence
on time and z as exp(ihz-ikct) where k is the free-space wave
number, h is the complex constant of propagation.

Take transverse wavenumber gz(kz—hz)l/z as a spectral

parameter located in the Riemann surface C of the function Ln g.
In considered waveguide, all the modes are known to divice
to TM and TE waves, and further will be investigated separately.
Spectral values of g correspond to generalized critical
frequencies of the guid=s, and coincide with complex fregquencies
of damped resonances of scatterers with cavity-backed apertures.

LEAKY TM WAVES

For these waves initial spectral (i.e.eigenvalue) problem
can be reduced to the Dirichlet boundary value problem for 2-D
Helmholtz equation for a scalar function u(p) representing E

component of the field (others are expressed via u(p)) B

(A+g%)u(p)=0, p=(x,y)€RZ\L; u(p)=0, pel  (1),(2)

If the contour L is nonclosed we assume that the function

u(x,y) " satisfies the Meixner condition in the vicinity of
endpoints Py o of the contour L, given by

/

grad u(p)=|(e-p" ;) (p-0",) | ~+/*n(m), (3)

where h(p) is some function of Holder class in the neibourhood
of L. Besides, it is assumed that the function u(p)is subjected
to the Reichardt condition at infinity (e=|p| » )

u(p)= § o BV (kp)e™™® (4)
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The eigenvalue problem is to define the set agEC for which
nontrivial solutions of (1)-(4) do exist.
Function u(p) can be sought as a single-layer potential
T

with unknown density Z(q) satisfying integral equation on L

_rZ(q)Hél)(g]p*ql] s =0, pel, (5)

L
with condition

Z(a)=[s(a,p))s(a,py) 1 /%8(a),  aeL (6)

where s(p,q) is the arclength between p and aq along L, while
€(q) is of Holder class zon L in corresponding metrics.

As there is a bijective mapping of the interval [-m,n] on
S such that [ is the image of interval [-d,d], we can write

T
Jz(0)B {1 (aR(8,7) 1d7=0,  ee(-d,d) (7)
-1
LR Z0x(T),y(T)11(T), rel-d,d]
2(7)= (8)
01 TE[—ﬂ.‘n]\[_dld]
L ! 4 1 /7
R(8,T)={[x(8)-x(T) 1%+ 51 ®) -y (114112 1(ry=fxlt) 1241y (= P /2
Decomposing the kernel function of (7)) as
H ' (aR(e,7)] = H(6,7) + 2in MIn|zsin((e-t)/21]  (9)

and expanding both H(&,7T) and the logarithm in terms of angular
exponents as

H(B,7)= z Ehmnei(ma+nr)’ 1nlgsip[(9—r)/2]|:—1/2§?in(9—T)/|n|
(m)(n) (n=0)

we come to the dual series equations

zlnlplzneinez 2 Eeine hoo_pZn oo 6e[-d,d] (10)
(n=0) (n) (m)
Yz, &%= 0, e<[-m,7]\[-d,d]

(n)

Note that if the functions x(€),y(8) marametrizing S are
smooth enough, then the Fast Fourier Transform algorithm can be
efficiently applied for the computation of coefficients hmn'

Eguations (10) can be regularized by means of the procedure
of Ref.1 with the result of the linear algebraic system of the
2nd kind. Thus, the initial spectral problem is equivalently
reduced to eigenvalue problem for certain matrix operator-
Tunction I+H(g) where H(g) is analytical with respect to g and
compact in some Hilbert space for each g€C\(0,®)., Then one can
conclude that oh consists of isolated points of C\(0,w) of

finite multiplicity. To find them numerically with any desired
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accuracy, one can use truncated system of linear equations.

LEAKY TE WAVES

In this case we start with ths Neimann boundary problem

(a+g?)v(p)=0, peR*\L; ov(p)/on =0, peL  (11),(12)

where v(p):Hz(x.y), plus conditions (3) and (4) for v(p). The

field function here =rcan be represented as a double-layer
nctential

v(p)sz(q>5§ B (glo-alyas,,  »=R*\L (13)

L

where the unknown density function satisfies the conditions

1/2

Z2(p})=2(p,)=0,  8Z(p)/ds=[s(p.p))s(p,py) 1" "/ ¥(p) (14)

with ¥(p) from the Holder class on L.

Further treatment exploits the same parametrization of the
curve S as for "M modes which leads to an integro-differential
eqguation for the function Z(7T) completed by the identical zero
off L. Proceeding by analogy with the TM case and oecomposing
the kernei into singular and regular parts expanded in terms of
Fourier angular series, we come to the dual series equations
differing from (10) by term |[n| instead of 1/|n| in the left
hand part. After using regularization procedure we obtain
eigenvs lue problem for the set of linear equations which 1is
sclvable numerically with the desired degrece of apprcximation.

NUMERICAL RESULTS

Basing on proposed approach, the algorithm for M and TE-
waves computations was develcoped, effective for waveguides
with arbictrary smooth cross-section. There were two main goals
of our analysis: to test our results by comparing them with
those available from litersature, and to investigate some guides
not analysed before. As only circular open-slitted waveguides
have been studied before (Ref.2), we chosed the guides with
cross-sections shaped as Cassini oval and ellipse. These curves
depend on some geometric parameters and can vary essentially,
e.g€., Cassini oval changes from a circle to lemniscate.

Open-slitted waveguide 1is characterized by following
parameters: & which is the slot position angle, and &, where
2(nm-8) is the slotwidth. The shape of ellipse is defined by its
eccentricity £. For £=1 ellipse degenerates into a circle. In
this case the spectral values of ga must coincide with zeros of
integer-n Bessel functions and their derivatives for TM-waves
and TE-waves, respectively. We discovered that for both types
our algorithm delivers tne results (for several lowest modes,
and with truncation number N=20) within the accuracy of lﬂ_b
as compared with the tabulated ones.

In Figs.1,2 the plots of =pectral values as functions of
slotwidth are presented for several lower modes in an open-
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slitted elliptic waveguide with b/a=0.5 (2a,2b are larger and
smaller axes) for two different positions «f the sloci: &=z=0 . n/2.

Fig.3 demonstrates similar plots for leaky TM -modes of
the same elliptic guide. As for Cassini oval cross-section, its
2

L e n - [
shape is defined by the equation {x5+y +c2}‘-4czx‘:d4‘ Fig.4

shows complex wavenumbers of TEE&POde (so-zallied sict mode)} in
this waveguide as functions of the parameter a=c i while 2a
is again the larger axis.
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