
Linear Constrained CMA Approach to Robust Adaptive Beamforming

Xin Song, Jinkuan Wang, Yanbo Xue and Yinghua Han
School of Information Science and Engineering

Northeastern University, Shenyang, 110004, China
E-mail: sxin78916@mail.neuq.edu.cn

1. Introduction
Adaptive beamforming is used for enhancing a desired signal while suppressing noise and

interference at the output of an array of sensors. Adaptive beamforming has applications in
fields such as radar, sonar, seismology, radio astronomy, and wireless communications [1]-[5]. In
particular, the development of robust adaptive beamforming spans over two decades.

When adaptive arrays are applied to practical problems, it is well known that adaptive
beamforming algorithms can suffer significant performance degradation because the array re-
sponse vector for the desired signal is not known exactly [6], [7]. In fact, the performances of the
existing adaptive array algorithms are known to degrade substantially in the presence of even
slight mismatches between the actual and presumed array responses to the desired signal. Sim-
ilar types of degradation can take place when the signal array response is known precisely but
the training sample size is small. Therefore, robust approaches to adaptive beamforming appear
to be of primary importance. There are several efficient approaches that are known to provide
an improved robustness against some types of mismatches, such as the linearly constrained min-
imum variance (LCMV) beamformer [8], the diagonal loading of the sample covariance matrix
[9]. But these methods cannot be expected to provide sufficient robustness improvements.

Linear constrained constant modulus algorithm (LC-CMA) is an effective solution to
the problem of interfere capture in constant modulus algorithm (CMA). But in practical, the
performance of the LC-CMA degrades in the presence of even slight mismatches between the
actual and presumed array responses to the desired signal. In this paper,on the basis of LC-
CMA, we develop a novel robust LC-CMA (RLC-CMA). Our RLC-CMA provides excellent
robustness against the signal steering vector mismatches and small training sample size, offers
faster convergence rate. Computer simulations demonstrate a visible performance gain of the
proposed RLC-CMA over other traditional and robust adaptive beamforming techniques.
2. Problem Formulation
2..1 Mathematical Model

Consider a uniform linear array (ULA) with M omnidirectional sensors spaced by the dis-
tance d and D narrow-band incoherent plane waves, impinging from directions {θ0, θ1, · · · , θD−1}.
The structure of adaptive beamforming is shown in Fig. 1. The observation vector is given by

X(k) = s(k) + i(k) + n(k)
= s0(k)a + i(k) + n(k) (1)

where X(k) = [x1(k), x2(k), ..., xM (k)]T is the complex vector of array observations, s0(k) is the
signal waveform, a(k) is the signal steering vector, i(k) and n(k) are the interference and noise
components, respectively. The output of a narrowband beamformer is given by

y(k) = WHX(k) (2)
where W = [w1, w2, ..., wM ]T is the complex vector of beamformer weights, M is the number of
array sensors and (·)T and (·)H stand for the transpose and Hermitian transpose, respectively.
The signal-to-interference-plus-noise ratio (SINR) has the following form:

SINR =
WHRsW

WHRi+nW
(3)

where
Rs = E{s(k)sH(k)} (4)

Ri+n = E{(i(k) + n(k))(i(k) + n(k))H} (5)
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are the M × M signal and interference-plus-noise covariance matrices, respectively, and E{·}
denotes the statistical expectation.
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Fig. 1: The structure of adaptive beamforming.

2..2 Linear Constrained Constant Modulus Algorithm (LC-CMA)
The constant modulus algorithm (CMA) is a blind algorithm. CMA is a gradient-based

algorithm that works on the premise that the existence of an interference causes fluctuation
in the amplitude of the array output, while otherwise has a constant modulus. It updates the
weights by minimizing the cost function [10].

J(k) =
1
2
E[(|y(k)|2 − y2

0)
2] (6)

Using the following equation:
W(k + 1) = W(k)− µg(W(k)) (7)

where y(k) = WH(k)X(k + 1) is the array output after the nth iteration, y0 is the desired
amplitude in the absence of interference, and g(W(k)) denotes an estimate of the gradient of
the cost function.

g(W(k)) = 2µγ(k)X(k + 1) (8)
where

γ(k) = (|y(k)|2 − y2
0)y(k) (9)

The weight update equation for this case becomes
W(k + 1) = W(k)− 2µγ(k)X(k + 1) (10)

CMA is computationally less complex than other algorithms. But when SINR is low
and constant modulus of interference sources are existed, the performances of CMA are known
to degrade severely. Linear constrained constant modulus algorithm (LC-CMA) is an effective
solution to the problem of interference capture in CMA.

LC-CMA is a real-time constrained algorithm for determining the optimal weight vector.
The optimal weight vector is the solution of the following optimization problem:

min
W

E[(|y(k − 1)|2 − |y(k)|2)2] subject to WHa = 1 (11)

Optimization technique used to find W will use Lagrange multiplier method, thus, the
expression for W becomes

W(k + 1) = P[W(k) + µeH(k)X(k)] + F (12)
where

F = a[aHa]−1

P = I− a[aHa]−1aH

e(k) = (|y(k − 1)|2 − |y(k)|2)y(k) (13)
LC-CMA requires the knowledge of the direction-of-arrival (DOA) of the desired signal,

but in practical application, the performance degradation of LC-CMA may become evident
because some of underlying assumptions on the environment, sources, or sensor array can be
violated and this may cause a mismatch between the presumed and actual signal steering vectors.
3. Robust Linear Constrained Constant Modulus Algorithm (RLC-CMA)

We develop a novel approach to robust adaptive beamforming that provides an improved
robustness against the signal steering vector mismatches and small training sample size.

In practical applications, we assume that the norm of the steering vector distortion ∆ can
be bounded by some known constant ε > 0, ||∆|| ≤ ε. Then, the actual signal steering vector
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belongs to the set,
Φ(ε) = {b|b = a + ∆, ||∆|| ≤ ε} (14)

The array response should not be smaller than one, i.e.,
|WHb| ≥ 1 for all b ∈ Φ(ε) (15)

According to [11],we can rewrite the constraint as
WHa = ε||W||+ 1 (16)

The optimal problem (11) can be written as the following problem
min
W

E[(|y(k − 1)|2 − |y(k)|2)2] subject to WHa = ε||W||+ 1 (17)

Use Lagrange multiplier method to conclude the weight vector by minimizing the following
function

H(W, λ) = (|y(k − 1)|2 − |y(k)|2)2 + λ(ε2WHW + WHa + aHW −WHaaHW − 1) (18)
where λ is a Lagrange multiplier. Take the gradient of H(W, λ)

Γ(W, λ) = −eH(k)X + (λε2I− λaaH)W + λa (19)
The weight update equation for RCL-CMA becomes

W(k + 1) = W(k)− µΓ(W, λ)

= W(k) + µ[eH(k)X(k)− (λε2I− λaaH)W(k)− λa] (20)
The weight vector in (20) satisfies the constraint in (16) at every iteration.

To summarize, our proposed robust linear constrained-CMA (RLC-CMA) consists of the
following steps.
Step 1) Initialize W(0), y(0)
Step 2) Compute the desired signal steering a and let i = 1.
Step 3) Compute λ by using (20) and the constraint in (16).
Step 4) Use λ obtained in (19) to obtain the gradient Γ(W, λ).
Step 5) Use Γ(W, λ) obtained in (20) to update the weight vectors.
Step 6) If i = n, stop. Otherwise, set i = i + 1 , and go to step 3.
4. Simulation Results

In this section, we present some simulations to justify the performance of proposed RLC-
CMA. We assume a uniform linear array with M = 10 omnidirectional sensors spaced half a
wavelength apart. For each scenario, 100 simulation runs are used to obtain each simulated point.
In all examples, we assume two interfering sources with plane wavefronts and the directions of
arrival (DOAs) 30◦ and 50◦, respectively.
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Fig. 2: Output SINR versus N .

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

0

5

10

15

20

SNR(DB)

O
U

T
P

U
T

 S
IN

R
 (

D
B

)

LC−CMA
RLC−CMA

Fig. 3: Output SINR versus SNR.

In the first example, the plane-wave signal is assumed to impinge on the array from θ = 3◦.
Fig. 2 displays the performance of the two methods tested versus the number of snapshots for
the fixed SNR = 10dB and ε = 1.5. Fig. 3 shows the performance of these algorithms versus the
SNR for the fixed training data size N = 100. The example demonstrates that the performance
of RLC-CMA can be seen to outperform that of LC-CMA.

In the second example, a scenario with the signal look direction mismatch is considered.
We assume that both the presumed and actual signal spatial signatures are plane waves imping-
ing from the DOAs 3◦ and 6◦, respectively. This corresponds to a 3◦ mismatch in the signal
look direction. Fig. 4 displays the performance of the two methods tested versus the number
of snapshots for SNR = 10dB and ε = 1.5. The performance of these algorithms versus the
SNR for the fixed training data size N = 100 is shown in Fig. 5. In this example, LC-CMA is
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Fig. 4: Output SINR versus N .
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Fig. 5: Output SINR versus SNR.

very sensitive even to slight mismatches that can easily occur in practical situations. Moreover,
LC-CMA shows poor performance at all values of the SNR and N .
5. Conclusions

The proposed RLC-CMA in this paper is based on classical LC-CMA. The proposed RLC-
CMA is an effective solution to the problem of interference capture in CMA. RLC-CMA offers
faster convergence rate and provides excellent robustness against the desired signal mismatches
and small training sample size. Moreover, the mean output SINR of RLC-CMA is better than
that of LC-CMA in a wide range of SNR and N . Our simulation figures clearly demonstrate that
in all examples, the proposed RLC-CMA is shown to consistently enjoy a significantly improved
performance as compared with LC-CMA.
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