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1. Introduction 
 
 Recently, beam-steering reconfigurable antennas have gained considerable attention due to 
their capability of enhancing the performance of wireless communication systems [1]-[5]. By 
changing the main beam direction, they have the potential to avoid noise sources, to mitigate the 
multipath fading, to provide larger coverage, and to save energy. Unfortunately, most of the 
currently reported beam steering antennas suffer from either the low realized gain or the very small 
overlapped impedance bandwidth. In [1] and [2], rectangular single-arm spiral antennas are 
employed to realize beam scanning. The gains of the antennas in [1] and [2] are between 3-6 dBi 
and 4 dBi, respectively, and the bandwidths of the two antennas are about 6% (axial ratio 
bandwidth) and about 1.4% (50MHz at 3.7 GHz), respectively. In addition, a four-element L-shaped 
antenna array is proposed that can switch the main beam to 8 directions [3]. The gain of this design 
is around -0.5-2.1 dBi and the impedance bandwidth is 4% (2.42-2.54 GHz). In [4], a reconfigurable 
patch-slot-ring antenna is designed with both elevation and azimuth beam switching. The 6-dB 
impedance bandwidth for all modes is 2.6% centred at 2.05 GHz, and the measured peak gains are 
6.1–6.7 dBi. Furthermore, a beam-tilting pattern reconfigurable microstrip parasitic dipole array is 
shown in [5] with an impedance bandwidth of 5%. The gain of this antenna is not reported. There is 
no doubt that the small impedance bandwidth or the low gain of the above antennas can 
significantly limit their applications.  
 
In this paper, a beam-steering quasi-Yagi planar dipole antenna is proposed with improved 
bandwidth and much higher realized gain for WLAN applications. The antenna is capable of 
changing its E-plane maximum beam direction towards 20⁰, 0⁰, and -20⁰ with respect to the end-fire 
direction. It can achieve a realized gain of 10.7 dBi and a 11.5% overlapped impedance bandwidth 
centred at 5.3 GHz. The beam scanning of the proposed antenna is realized by changing the length 
of the microstrip-to-coplanar-strip (CPS) balun. Specifically, the length of the balun affects the 
phase difference of the currents on the two arms of the dipole. Different phase differences of the 
currents will lead to different E-plane main beam directions.  
 
2. Beam Steering Mechanism 
 

A very thin (ideally zero diameter) half-wavelength dipole oriented along the x-axis is 
shown in Fig. 1. When   , 0 , and  , 0 
where   and k is the propagation constant, the maximum beam of the antenna is 
towards φ=90°. In this case, the normalized far-field electric field pattern can be written as [6]  cos 2 cos sin  

                                                         (1) 
If there is a phase difference between the currents on the two arms, which is given below: · , 180⁰ 180⁰                                                          (2) 
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on the CPS is β×2(L3+L5+2Wc), which can make the maximum beam in E plane (x-y plane) radiate 
towards φ=110° direction. For State 3, diodes f, a, and diode group R are on, and all the others are 
off. The phase difference of the currents on the CPS is -β×2(L7+Wc). In this case, the maximum 
beam direction is at  φ=70° direction.  
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Fig. 3 (a) Schematics of the pattern reconfigurable antenna;(b) Balun of the antenna 
 

Table I Dimensions of the pattern reconfigurable antenna 
Parameter L1 L2 L3 L4 L5 L6 L7 Wc 

Value (mm) 3.8 2.3 4.1 2.3 1.1 5.5 5.6 0.4 
Parameter Ldir Ldri Lcps Limp Wimp S Lsub Wsub 

Value (mm) 8.6 14.8 6.2 5.8 2.5 9.8 105 85 
 

4. Simulated Results 
 The antenna was simulated using CST Microwave Studio. According to the PIN diode 
datasheet [8], the diode was modelled as a resistor of 3Ω for the ON state and a parallel circuit 
consisting of a 10KΩ resistor and a 0.03 pF capacitor for the OFF state. In this way, the losses of 
PIN diodes are taken into account for the reflection coefficient and realized gain calculation. Fig. 4 
shows the reflection coefficient versus frequency for the three states of the antenna. It can be noted 
that the overlapped impedance bandwidth (│S11│≤-10 dB) is 11.5% with a centre frequency of 
5.3GHz. The E-plane far-field radiation patterns of the realized gain for the three states of the 
antenna are displayed in Fig. 5. It is shown that the maximum beam direction in E-plane can be 
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changed towards 70⁰, 90⁰, and 110⁰. The gains of State 1, State 2, and State 3 are 10.7 dBi, 10.6 
dBi, and 10.7 dBi, respectively. The H-plan radiation patterns maintain almost the same for the 
three states. Due to the limited space, they are not presented in this paper. 
 

  
Fig. 4 Simulated input reflection coefficient 
for the different states of the antenna. 

Fig. 5 Simulated E-plane (x-y plane) 
radiation patterns of the realized gain at 5.2 
GHz.

5. Conclusion 
 
 A printed pattern reconfigurable quasi-Yagi dipole antenna is proposed. The maximum 
beam of the antenna can be switched towards 20⁰, 0⁰, -20⁰ with respect to the end-fire direction in E 
plane by changing the length of the microstrip-to-CPS balun. For the three radiation states, the 
simulated overlapped impedance bandwidth is 11.5% with a centre frequency of 5.3 GHz and the 
simulated gain is 10.7 dBi. Compared to most of the reported beam-steering antennas, the proposed 
design has a much larger impedance bandwidth and a much higher gain. Future work on the antenna 
includes building a prototype with biasing network and conducting measurement of the antenna 
performance. 
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