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The submitted paper deals with the parabolic equations and their
soluticns for the partial waves of the integral representations of the point
source field in the inhomogenecus media with fluctuations of dielectric
permeability. The weak and strong fluctuations of the field are considered.
The attention 1s emphasized at the case, when the undisturbed incident
partial waves have their own caustics, for which the parabolic equation of
rather general form is constructed and solved. That is important for HF wave
propagation in the ionosphere with fluctuations of the electron density. In
the case of weak fluctuations the solution is constructed for a  separate
realization of the point source field. For streng fluctuations of the
amplitude the point source mean field is considered by the formalism of the
parabolic equation for partial waves in the integral representation of the
mean field.

First we consider the integral representation (N.N.Zernov, Sov.
Radiotehnika i elektronika, 1990 ,v.35 ,N8 ,p.1590 in Russian; N.N.Zernov et
al. Radio Sciernce Spec. Issue of JS2 for the 23-d Gen. Assembly of UKSI,
Prague, 1990, to be published)
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which generalizes Rytov method for the case of a point source field in the
inhomogeneous media, being the asymptotic solution of the equation
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with the plane—stratlfled media ED (2) modeling the urndisturbed ionosphere,
the local inhomogeneities &£ ( r) and the wave number K for vacuum. The
function Ve (r ,ot ) is the integrand of Fourier integral for the point source
fleld in the plane—-'-“t,rat.lfmd Inzs(ll:t. satisfying the reduced equation (2) with
£(yr )=0 . The function P(r, oL ) describes the diffraction of the partial
waves on the local inhomogeneities. The flrst and second order terms of the

perturbation series for <P , when g ¢ /) is a weak disturbance, satisfy
the equations
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with w=1,2, f,= — K &(r), £ = (VCE) and the uniform boundary
conditions CPm 2 0 with respect to o when ¥ 2 0 , that is quite really

for forward scattering inhomogeneities. The partial wave V- (r‘:’ &l ) in (1)
one can express in WKB approximation Ll
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exp [LKX + LK L(z,oa)] z Vo
outside of caustic, with L(z d)__ S [_&,(2:) o ] dZ

before the reflection from caustic z . det,ermlned by the equality
=0 °r if there is no caustic at all; and
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after the reflectlon from caustic. .

Near the turning point Z the field Vo ( V‘, ol )  pust be expressed
by that of Airy functions, which gives the standing wave below caustic and
exponential descent after it. For further consideration we must only know, that
the near caustic area scale is
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As in (N.N.Zernov. Sov. Trudi . XIY Vsesouzn. Konf. po Kasprostr. Radic
voln. L. Nauka. 1884, t.2, str.244; in Russian) for each and point of
observation (x,z) we choose, speaking by the words of (R.J.Hill. Journ.
Acoust. Soc. Amer. 1985, v.77, Nr.5, p.1742), +the particular ray of interest,
which comes at the point (x,z) and arises from some point on the constant
phase surface, containing the point source and propagating through the source
i ) - e % - Pt

ith the angle v (LPCSuh..’L/J&(o) with the Z-axis. We use this particul

ray to introduce around it the local ray-centered coordinate system (s,n)
with the variable s to be the distance along the ray, and n — the distance
between the point (x,z) and the particular ray along the straight line
perpendicular to this ray. For the coordinates chosen the Lame coefficients
are the following
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with ? (s) to be the curvature radius of the ray of interest.

Taking into account the expressions for scalar product of the gradients
and Laplacian for these curved cocordinates, one can write instead of (3) the
equation
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This equation is of the same sort as the equation in (R.J.Hill,1885), written
for the ratio v/’U'o - Under the conditions ﬁb >» 4 QE 9-1 « i

QE 9 K D i <4 , where QE is the spatial scale of the local
inhomogeneities, D is the hop—distance, the last three terms of the
equation can be shown to be small, compared with the first three. Therefore,
the ultimate equation to be investigated further is the parabolic equation of

the form ;
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To construct the solution of the last equation we consider two areas of
space. Out of caustic the field Vg, (S, ) is represented by formulae (4).

After expanding the phase < (s,n) °f Vv, (s, n) into the series near the
point (s5,0) one can write
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Using the last expression, neglecting the derivatives of the slowly varying
function 2 ‘-V and taking into account the conditions ] 1
[ea(s % 1 e/s.,«
and E{_ ? < l , we get for the outside of the caustic area the
equation
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In the vicinity of the turning point, where the n—axis is parallel to the z -

axis, the second term in the equation (6) is small in comparison with the last

one, if , and the last term is of the order _1\ (o~ |
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with respect to the first. Then for the area near caustic we get the equation
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So, in the case, when the incident field 1I; LS,h.) has the simple caustic,
the parabolic equation (8) for the complex phase of the scattered field has
two representations (7) and (8) for two areas of space. In accordance with
(8) the irregularities, having the spatial scales large compared with the
caustic zone size, disturb only the phase of the scattered field at caustic.
For each of the equations (7), (8) it is easy to construct the solution,

but these +two solutions will not be the uniform solution of the initial

equaticn (6) along the whole ray of interest. To get the uniform  solution
it 1is necessary to solve the equation (3) directly. It is done in the
approximation of Fresnel diffraction for forward scattering  (N.N.Zernov,

1880; N.N.Zerriov et al. K. 5ci., to be published). The sclution is the
following
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Here M olel is the second derivative by &  of the function M (2!"( )
adjusted with L. (2,o0) from formula (4). The Fresnel propagator in  (9)
has the infinitely fast oscillaticns near the points of the particular ray
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These are the caustics of the incident and secondary fields. At these points
the expression (8) gives the finite geometrical optics solution of the
equation like (8). It also can be shown, that out of caustics the equality (9)
transits into the solution of the equation (7) with more simple  Fresnel
propagator, stipulated by (7).
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Like that, the integral representation (1) with the complex phase (9),
being the solution of the parabolic equation (6), gives the point source fizld
in the inhomogeneous media with the weak irregularities, which can have
stochastic as well as deterministic nature. The stochastic properties of the
partial waves, such as level and phase fluctuations, and the mowments of the
whole field (1) «can be <described by that formalism developed.

The similar approach can be also used for the calculation of the mean
field of the point source for the case, when the field amplitude fluctuations
are strong. For this situation we write
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and we have for every realization of W the stochastic parabolic equation
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with the initial condition 'LlJ'(r‘,aL)-) 1, when I' 2 0 , uniform with respect to
o . Then in the same manner, as in (R.J.Hill, 1985), one can get for the
mean value <w) the equation
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under the condition of Markov approximation

((smEn)Yy= Asin,n/s)T(s-s'y.

It is quite real to account, that the statistical inhomogeneity of the
random function E,( r ) is due to the inhomogeneity of the undisturbed media
€, (2) , and hence the function A € has the same spatial scale €o , as
£° 2) The equation (11) is written for the scale of W of the order

That is why Ag (n,n, s) in (11) can be substituted by Ag (0,0, S)
wlth t.he small mistake of ‘t.he order QE ﬂo .Then we finally have the equatlon
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(hs:l). Its solution is

(v o
(W) = w(sn.)exp[——iﬁei—:gj?dl

with Wo (S,h) to be the solution of the equation (11), when Ai"" 0. In
our case Wo = 4 .

So, the integral (10) with Vo from (4) and formula (12) for ('LU">
give the integral representation of the mean field of the point source in
the inhomogenecus media for the case of strong anmplitude fluctuations. It
describes the multi - ray effects of the mean field, including the mean field
on caustics.
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