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We consider the scalar wave equa-

tion

(el repw]}uwi=0 &)
which describes the propagation of
waves through a random medium with
refractive index n(f) = 1 + eulf).
Equation (1) may be solved by assuming
&“EJE}I} (the Born method)
or TaepZ, ¢’y (the Rytov method).
Starting from the zero-th order ‘solu-
tion assumed known, higher order terms
of these methods are shown to be given
successively as Integrals involving
lower order terms.}

On the other hand, a comparison of

the forms of the solutions reveals a
reciprocity relationship between the
terms of the two metn:j .2  Namely, by
expanding U=Us oxpE e’y  (with Us
= )_in _powers of ¢ and comparing
it with U=l 25 €’ » where §;
22U/t , we obtain
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I f we take the logarithm ofU"EWG’fi);
expand log(1t2%e’fz) in povers of ¢,
and compare it with logU'Z;"e'}'

we obtain
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In Eqs. (2) and (3), j, take on non-zero
positive integer values.

We can obtain analogue of Eq. (2)
or (321 for truncated solutions U%=
ap 3 et Yy (the nth Rytov approxi-
mation) and Mr=Fref iy (the nth
Born approximation). Thus, U may
be represented by UX5°¢’gV , where
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where [j/n] stands for the integer

nearest to (including j/n) but not
greater than j/n. Further, %D can be
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represented by UWFZ?'"# ’ where
o ZH s ppp  [Hyretttin
" 2';31‘4/4} ¥ = 'iJ"’ wprn. &

Note that the reciprocity, as shown by
Eqs. (2) and (3), and Eqs. (4) and (5)
represent basic relations that are valid
for any type of wave, l.e,, plane,
spherical, or beam wave.

As an example of application of
these formulas, specifically of Eq. (2),
we will present an alternative way of
obtaining the result found by Laussade
and Yariv who took into account of the
effect of all orders of multiple scat-
tering In the optical wave propagation
through a turbulent atmosphere.® It
should be noted that the use of the
scalar wave equation is almost complete-
ly justified for millimeter and shorter
wavelengths® and that the results
derived under the assumption that the
wavelength be much smaller than the
inner scale of turbulence are valid with
negligible errors for microwaves as
well,® Based on these observations it
should be recognized that the scope of
the problem discussed by Laussade and
Yariv is to be extended to include the
microwave and millimeter wavelengths.

Laussade and Yariv considered the
case of a monochromatic plane wave in
the positive x direction,incident upon
the boundary at x = 0 of the turbulent
atmosphere that occupies the region
x > 0. Neglecting the €2\ 2 term they
solved Eq. (1) by the Born method. (Note
that ¢'s used by these authors corres-
pond to our p's.) With the Gaussian
distribution for random variable u(fr)
they showed under the assumption valid
for optical wavelengths that {Am#1>=0

and  Lfun) =< )" /ml . From this,
they deduced :
UELP) =V, P) erpGlL) @)

and
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B, 16,0)=B,T) exp26(L), ()
where K‘L
GLI=ERL [wfarca- e I 06
and <

B, T)=B, (L6, 8)=UlfIU L))
with T=‘P‘ “P‘ .

In €Eqs. (6) and (7) we set (x =L,y,2)
= (L,p) and the superscript (1) refers
to the first Rytov approximation,

Now we will show the derivation of
Eqs. (6) and (7) by the use of Eq. (2)
under the same Gaussian assumption for

u(r). We only need to study £, which
may be written from Eq. (2) as
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By retaining the portion Z,z::. which

consists exclusively of ¥; and ¢
and neglecting the other portlonj”:‘;‘
which contains higher order terms

¥, <, Yam » We obtain
By 4 iy 2 SOl e~ ok

This can be shown to be approximated by
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where use has been made of ﬂ"‘kg* ‘ﬁ/?..'
that can be obtained from Eq. (2) with
n =2, Then it follows from

CU> = Uy o™ P> = U oxp €<
that  CU) = [V, expliia)] especsn>
= U exp €Y, or (U%’{U)"P(‘:('&)).

From the Born and Rytov solutions to
£Eq. (1) we find for optical and milli-

meter waves that P ‘.Kl ¢

X ;, KT - (x-X)

fiN=fmm ik j&'I':Nﬂlﬁ)e e ,
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where we set ,u(r)=-fK4ﬂ0(j‘)e .

From this we obtain e Crd i
QA0 R (bt S il e padi- D))

In add}tlorg we find that .,
gcr)q-tfdlfz L [K Mﬂmﬂ@é‘fgﬂﬁ@‘lmx«f&é ]
o S s
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where X = max (x',x'). Note that
1= %2 + %321 holds exactly. More
important to note is that ¥z ¥ 0 and
hence £ =,%2¢/ in the optical approx-
imation where the exponential functions
are set equal to unity. When this
approximation is not enforced strictly,
we see that ¢ (and hence all Y%,
k > 3) is very small compared with £
or %2/ . This fact was used implicitly
in the foregoing in evaluating <Pam ).
Moreover, it can be shown that

Re(hLE)=-£1 [& ﬁk(z-é-‘.cd %—1 FiK2)

T Py~ J [ " L L )

From these relations and (U'w)" V)
Kexp(-€%¢tr>) we can obtain Eq. (6)
under suitable conditions.

in a simllar manner Eq. (7) can
also be derived.
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