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Abstract and the array is operated at the wavelengtirhenz is given
as follows:
Schelkunoff’s Arrays of Arrays Principle (AAP) is examined by _
using techniques from the algebraic geometry. It is shown that z = ¥, 2)
liner antenna arrays are naturally regarded as a function over _d 0 3
algebraic curves and AAP is obtained from a tower of Galois wo= 2 sin o, &)

coverings. Furthermore the case of infinite arrays is treated \yhere v is the universal parameter. In case that a beam is
by the theory of étale fundamental groups and it ultimately  gteered to an anglé,, the corresponding phase term can be

gives 'Absolute Arrays of Arrays Principle. conveniently extracted from,, as,
d, . .
1. INTRODUCTION u= X(sme —sinbp). 4

Schelkunoff provided a view of linear antenna arrays as poly- r, () is factorized into,

nomials and formulated arrays of arrays principle where subar-

rays are regarded as radiating elements. Recently, the authors Fr(z) = F{V(2)F2 (z7) -« F{ (271727 Pn=1), - (5)
re-examined corresponding property by algebraic technigques aap is readily applied by deeming the subarrays as

and proved ‘The ULA Factorization Theorem'[2]. However,,iating elements. We define the-th subarray factor with
the theorem only applies to Uniform Linear Arrays (ULA). K elements by the following form

In this study, general methodology has been developed by
using more sophisticated mathematics. The linear array should F\'”(z) = ai™ +a{™ 2 + -+ + {7 2K 1, (6)
be regarded as a function over algebraic curves, and an array (

771,) .
pattern factorization is naturally obtained from a tower ofherea; € C, (0 <i < K —1).

Galois coverings. The tower has one to one correspondence 3. ULA FACTORIZATION THEOREM
with a projective system of subgroups of additive |ntegean this section, the previously reported ULA Factorization

The longest sequence is obtained by a composition serlesrﬂf . i
. L eorem is reviewed.
a cyclic group of order the number of radiating elements. oL . . )
) i o Before describing it, some terminologies are defined. A
Any subarray with arbitrary excitation can be regarded as_a. . . i
h . . . finite order polynomial with the first termh and all the other
unigue ‘tree’ as that in the previous work. The trees determine

: S .~ .. non-zero coefficients is called Unit Coefficient Polynomial
topology of feeding networks. This is a natural generallzatlo(TJCP) e.g. 1+ +12° + 219, In general, UCP corresponds

of the ULA Factorization Theorem. Finally infinite arays LA with non-uniform spacings. A polynomial in UCP

are examined through profinite completion procedure and . . ; " .
) L is called irreducible iff cannot be factorized into products
‘Absolute Arrays of Array Principle’ is proposed for the tower . ) NV

. - of lower order polynomials in UCP. If a polynomigl is
of Galois coverings.

From now on, we assume that, R, Z. N are the set factorized into lower order polynomial &5= fifofs--- fp, @

. roduct of the formy; f; - - - fg, (4,4, - ¢ € {1,2,3,--- ,p}),
of c_o_mpl_ex numbers, the real numbers, the integers, and %ecalled sub-product of or shortly sub-product. With the
positive integers.

convention, the following theorem is found,

[ULA Factorization Theorem]] Let P be a positive integer
with factorizationP = pips - - - p,, Where everyp; is a prime
but not necessarily distinct each other. Then the following

An array factor,i.e. Schelkunoff polynomialFp(z), of a factorization of the geometric series is possible,
linear antenna array wittP radiating elements is expressed

2. SCHEULKUNOFF POLYNOMIAL AND ARRAYS OF
ARRAYS PRINCIPLE

as follows: Up(z) = Wy, (2)Up, (2P ) Upy (xP172) - - ‘I’pn(fplpzmp”’&)
Fp(z) —ap+arz+a®+---+ap_12°71, (1) where,
P
whe.relam, (m”: 0,1,2,---,P — 1) are complgx amay  Qp(z) = ltaztattadto-tall= x 71.
excitation coefficients. We assume that the positiomoth z—1

element ismd, the observation angle #from the boresight, The factorization has the following properties,



() (A) is irreducible in UCP,

(i) Sub-product of¥ p(z) in (A4) is UCP,

(iii) If a factorization Up(x) = [], F; exists, where every
F; is UCP, then everyF; is expressed by sub-product
of ¥p(z) in (4) by appropriately choosing the order of
P1,DP25° " s Pn-

We describe an application of the theorem. We attribute
a Schelkunoff polynomialls(z) = 1 4 x + 22 to a tree
in Fig.1. The term is an analogue of ‘tree’ in the discrete
mathematics[3], “a loop free connected graph.” If a factor-
ization formula is given, we can create a tree in accordance
with order of factorization of polynomials. For example,
U3 (2)Ws(2®) = (1 + 2+ 22)(1 + 23) and Uy (23)V3(z) =
(1+2%)(1+=z + 2?) correspond to Figs.2 and 3, respectively.
If the order of multiplication is different, the resultant tree
is different. It is noted that expanded factorization formula
{+2)Q+z+2H))} =1+a+22+ 23+t +2° = Ug(x)
should correspond to Fig.4. With the convention, the map
from the factorization formula to the feed network is well-
defined. The resultant feed network is not necessarily a tree
for general array factorization formula. For example, Fig.5
corresponds to{¥s(z)}? = (1 + z)?. The necessary and
sufficient condition for the feed network being a tree is that
expanded array factorization formula is UCP.

A tree is called irreducible if no finer decomposition exists.
By using the map defined in the above, we have the following
theorem as a corollary,

[Feed Network Factorization Theorem]] There is an isomor-
phism between the factorization formulas of uniformly-space
ULA and the trees. In particular, a tree fod)is irreducible.

Fig. 4: Vg(z) tree

Fig. 5: {¥2(x)}? feed network

dThe theorem tells us all the possible topologies of the
feeding network. For example, if a uniformly-spaced ULA

with 8 elements is given, allowable factorization is found to

be as follows:

\Ilg(aj) = \PQ(.T)\IJQ(J)2)\IJQ(1’4) = \112(1’)\1’2($4)\I/2(J)2)
= Wy(a®)Wy(z)Wa(a?) = Wa(2®) Wy (z*) Wy (x)
= Uy(aM)Uy(2) Wy (2?) = Wy (a?) Uy (2?) Wy (z)
= {Us(2)Wy(a?)} W (a?) = {Va(2) Vs (z*)} Wa(2?)
= {Ua(a?)Uy(a") )Wy (2) = Wo(x){Wa(a®)Wa(2")}
= Uy(a®){Us(2)Us(z")} = Wa(a*){ Vs (z)Wa(z?)}

Fig. 1: W3(z) tree = {U(2)Us(2?)Ta(2)},
where product of polynomials inside the brackets is

regarded as being expanded.

Fig. 2: U3(z)Us(23) tree

z

4. ALGEBRAIC CURVES AND ARRAYS OF ARRAYS

PRINCIPLE

We will try to generalize the previous theorems to the case of
general linear arrays with arbitrary excitations as in (5) and
(6). To achive, we need to observe that (5) is a product of
functions over covering spaces of algebraic curves[4][5]:

hpy SP1 hpy 4P1P2 hpg

h

‘P —1 Zplmmp”*l, (7)
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whereh,, : C* — C*; z +— 2", andC* is defined to be the set C* and.S* are homotopy equivalent and topological properties

C—{0}. Eachh,, gives unbranched covering[5] and the toweare identical.

corresponds to Kummer extensions[6] of algebraic functions.Let h(y) = €2™7¥ = x be the universal covering ¢f: R —

If we putz = zP1P2Pm gandy = zP1P2Pm-1 ¢ C* for them- S*. The fiberh=!(z) of arbitrary pointz on S* is isomorphic

th part of the coveringy —yP= = 0 is an irreducible algebraic to Z. The fundamental group, (S*, z) of the base point acts

function. In the algebraic extensid@i(y,z)/C(z), we have as automorphism ofR, and is homeomorphic t@. Choose

C(y,z) = C(x)[z"/Pm] = C(z)[y]/(yP™ — x) = C(y), thus y € h~'(z). m € Z = = (S, z) acts asn : y — y +m. The

we can writeC(y,z) = C(y). We attributeC(z) the same action is effective on the fiber ankl : R — S! is therefore

meaning to that in the tower (7). If we write the covering space Galois covering. Owing to the Galois theory of covering

of the m-th tower V(= C*) and the base spack (=~ C*), spaces[5]Gal(X/X) = m(X) and X = X/Gal(X/X) =

thenh,, :Y — X is a Galois covering and correspondingX / =, (X) are valid for the universal covering: X — X. In

fundamental gourps arer;(X) = Z and m(Y) = Z, the case oh:R — S*, the action of Galois group; (S*) =

respectively[5]. Indicating# as induced homomorphism byZ to the pointy results to an orbiy + Z. The quotient space

a continuous function, the Galois groupal(Y/X) of the is isomorphic toR/Z and is identified with the base space

covering space is calculated with the aid/gf . (m1(Y)) = S!. All the subgroups ofr(S!) = Z are of the formmZ

pmZ as follows: with m € N. They determine all the possible coverings with

base spaceR/(mZ) = S! by the Galois correspondence. By

Gal(Y/X) = m1(X)/hp,,#(m1(Y)) = Z/pmZ. using the uni\//(ersa? coverings, the corresponding tower of (7)

From now on, we write am-th root of unity as¢, = IS expressed by the following commutative diagram,
exp(2mj/m). All the roots of x — yPm = 0 are expressgd R R R R —— R
by y = ¢ -a'/Pm, (0 < n < pn). The algebraic

extensionC(y)/C(z) becomes a Galois extension in ordinary h:hﬁ“)l hﬁ,‘ﬁl h;;;’ml l hé‘fmpnfll
sense[6] becausgl, : C(y) — C(y), «'/Pr v (7 - /P T 1 Moo
gives automorphism of the field extensions whétg)) = S S S S S
C(z)[z'/P»] and (€ C(xz). In this case, the Galois group (10)

Gal(C(y)/C(z)) is homeomorphic to a cyclic group/p,,Z. wherehi“) Ly 2R and By sz o, . etc.,

In algebraic geometry, the following equivalence i Let us classify the tower by algebra. First of all, note that
known[5], . "
the following proposition,
Gal(Y/X) = Gal(C(y, ) /C(z)) = Gal,a(Y/X). (8) [Proposition] Let {p;};cny be a sequence of positive integers
not necessarily distinct each other. Then arbitrdne N can

Gal(Y/X), Gal(C(y, z)/C(z)), and Galaya (Y/X) stand for pe expressed by < m; < p;, (i € N) uniquely as follows:
topological, algebraic, and analytical (as complex manifold)

Galois groups. This is a consequence of GAGA[7]. Therefore N = my+mep1 +mapips+---
we will f_reely use desired Galois groups for the rest of the FMap1P2 Pt . (11)
manuscript. _ _ _
Let us try to give physical interpretation of the action ofn particular, defineVp = N mod P, and then the following
Galois groups. If we have the following factorization, is valid,
Fp(z) = F;S})(w)F,E? (xlm)v ) Npipo-op, = M1+ Mmapy + mapips + -+

" D d (12
then the Galois grougal(C(z)/C(z'™)) acts asFIEII)(x)H Fmapipe - pooy mod pipy - pa(12)

Fzﬁf)(ngm) with the value opr(f)(x“") remains unchanged. The above representation of integers forms a projective
The action corresponds to change of observation ‘angle’ siystem[8] with directed seA of indicesk < [ in case that
u-space: At first trial a signal is put in the direction of the: divides!. Its definition is as follows: LetA be a directed
main beam and then it will be changed in the direction ofet as indices of a direct product of groupk,., Gx. The

a grating lobe,.e. an action of the Galois group. This is a[],., G is called a projective system if for all the < p,
simple and natural interpretation. Even for general angles ribere exist homomorphismg,, : G, — G, wherey,, is
limited to the direction of the main beam, the symmetry iglentity, and for allA < u < v, it has the propertieg,, =
valid. That is why the Schelkunoff polynomial is a function),, o v,,. For example in (12), ifp1ps - - pm|p1D2 - - - P,
over the covering spaces. then ¥p,popon, prpo-pn © Npips-pn = Npipseopn, and
we can readily observe that the the definition is satisfied.
Therefore (12) forms a projective system. The toWero

In the previous section, the tower of Galois covering i8.Z O pip.Z O --- of subgroups of additive integers
considered as algebraic curves defined®rs. However the corresponds to terms in (11). Giving a projective system is
physics of the antenna arrays is adequately described on ¢lgeivalent to specifying a decreasing series of the subgroups
Schelkunoff’s unit circleS* in the complex plane. Fortunatelydue to inclusion. The tower of' in (10) has one to one

5. ALGEBRAIC STRUCTURE OF GALOIS TOWER
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correspondence with the system and all the configurationiisour case, and it is noted that (7) is a projective system of a

determined by the identification. tower of algebraic extension3/*" is the maximal unramified
Now, we investigate how much general the tower (7) is. Thextension of the function fiel@(X), andGal(M“"/C(X)) is
following well-known theorem[6] helps. generally called the absolute Galois group[9]. For the universal
[Jordan=Hélder Theorem] Let G be a group having the coveringh(®), we haveh(®) : C =Y — C* = X. It is known
following two composition series, that the topological Galois groupal(Y/X) is homeomorphic
G=Gy> G >G> >Gr=e, to m (X), and for (15) we have the following[10],
G=HyD>DH  DHyD:--- DHs=c, (X)) =2 7(X), (16)
Fhenr_’ = s, and their quotient groups can be rearranged to jg oo #1(X) is the profinite completion by taking the pro-
identical. jective limit of 7,(X). In the case of the Galois coverings
Go/G1, G1/Gs2, -+, G,_1/Gr, of linear arrays, we can defin®/ = C(X)(S) with § =
Ho/Hy, Hy/H>, ---, H,_1/H,, {X/"|n € N} for C(X). Then we havelM/*” = M and the
In particular, if we choose all thg;'s in (12) to be primes following[8][9],
and putP = pyp2 - - - py, then the following composition series Gal(M™ /C(X)) = Z, 17)
is obtained, R
where Z is the profinite completion ofZ, and is related
Z|PZ > p\Z/PL D pipsZ/PL D - -+ to profinite completion<Z, (p-adic integers) with respect to
Dpipe - PnaZ/PZ D0. (13) primesp’s as follows[8][9]:
The quotient groups are of the forii/p,Z. The above 7 = mz/nz = H Zy. (18)
resolution is the longest as a composition series, so is the neN p: all primes in N

corresponding tower of the Galois coverings. Finally consid- . i
erations given so far are summarized into a theorem, If we choose an element 6, we have the corresponding

[General Array Factorization Theorem] A Schelkunoff unique proj_ective system. For finite arrays, we can regard_ those
polynomial of a linear array wittP elements can be regardeoto be zero in the part with more than the number of radiating

as a function over a tower of Galois coverings. Arrays ¢féments in the projective system. Now all the projective
Arrays Principle is determined by a projective system GP/Stems are contained if, and it should be regarded as the

Z/PZ. In particular, the system which corresponds a corbsolute Galois group of the Ilnlear antenna arrays. Accour_mng
position series of./ PZ gives the longest tower of the Galoigthe trees of feeding networks with all the possible permutations
including sub-product as in the previous section, we finally

coverings. o e
The corresponding feed network theorem can be obtained/}§¥e the following ‘Absolute Arrays of Arrays Principle,
the same procedure as that in ULA caise by conside_rin_g the Ap 7. (19)

sub-product of array factors as well as order of multiplications.
We attribute it with the symbalp, and we have 7. SUMMARY

(14) with a tower of Galois coverings of algebraic curves. The
absolute arrays of arrays principle is formulated by &t&le
fundamental group with all the possible symmetries of feeding
networks.

) Schelkunoff’s arrays of arrays principle is naturally interpreted

Ap (H G

YN
where the projective systems are those in (13).

6. ABSOLUTE ARRAYS OF ARRAYS PRINCIPLE

In the previous sections, finite lengths were assumed for the

wer of loi veringsie. fini rr _ The theory will [1] S. A. Schelkunoff, “A mathematical theory of linear arrayB¢Il Syst.
tower of Galois coveringsie te arrays e theory Tech. J., Vol. 22, pp.80-107, 1943.

be eXtend_ed to the case of infinite arrays. . [2] H. Miyashita and S. Makino, “ULA Factorization Theorem,” 2004 IEEE
The universal covering can not be constructed within the AP-S Intern. Symp. Digt., pp.3055-3058, Monterey CA, June 2004.
category of algebraic curves because the corresponding mét ijn';cztr‘;ﬁ;e;rggg f\ie’\\‘lvef(i‘rf”fggg"” to discrete mathematics, Oxford
phism is ech’_nent'E_‘l- GrOthend|eCk[10] discovered a metho@) k. \wasawaAlgebraic Functions, Amer. Math. Soc., Rhode Island 1993.
to overcome it by introducing thétale fundamental group [5] W. Fulton, Algebraic Topology, a First Course, Springer-Verlag, New

et ich i iaet imi ; York 1995.
I (X) which is the projective limit of a category of algebraic [6] B. L. van der WaerdenModern algebra I, II, Springer-Verlag, Berlin
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