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Abstract

Schelkunoff’s Arrays of Arrays Principle (AAP) is examined by
using techniques from the algebraic geometry. It is shown that
liner antenna arrays are naturally regarded as a function over
algebraic curves and AAP is obtained from a tower of Galois
coverings. Furthermore the case of infinite arrays is treated
by the theory of étale fundamental groups and it ultimately
gives ’Absolute Arrays of Arrays Principle.’

1. INTRODUCTION

Schelkunoff provided a view of linear antenna arrays as poly-
nomials and formulated arrays of arrays principle where subar-
rays are regarded as radiating elements. Recently, the authors
re-examined corresponding property by algebraic techniques
and proved ‘The ULA Factorization Theorem’[2]. However,
the theorem only applies to Uniform Linear Arrays (ULA).

In this study, general methodology has been developed by
using more sophisticated mathematics. The linear array should
be regarded as a function over algebraic curves, and an array
pattern factorization is naturally obtained from a tower of
Galois coverings. The tower has one to one correspondence
with a projective system of subgroups of additive integers.
The longest sequence is obtained by a composition series of
a cyclic group of order the number of radiating elements.
Any subarray with arbitrary excitation can be regarded as a
unique ‘tree’ as that in the previous work. The trees determine
topology of feeding networks. This is a natural generalization
of the ULA Factorization Theorem. Finally infinite arrays
are examined through profinite completion procedure and
‘Absolute Arrays of Array Principle’ is proposed for the tower
of Galois coverings.

From now on, we assume thatC, R, Z, N are the set
of complex numbers, the real numbers, the integers, and the
positive integers.

2. SCHEULKUNOFF POLYNOMIAL AND ARRAYS OF

ARRAYS PRINCIPLE

An array factor, i.e. Schelkunoff polynomialFP (z), of a
linear antenna array withP radiating elements is expressed
as follows:

FP (z) = a0 + a1z + a2z
2 + · · · + aP−1z

P−1, (1)

where am, (m = 0, 1, 2, · · · , P − 1) are complex array
excitation coefficients. We assume that the position ofm-th
element ismd, the observation angle isθ from the boresight,

and the array is operated at the wavelengthλ. Thenz is given
as follows:

z = e2πju, (2)

u =
d

λ
sin θ, (3)

where u is the universal parameter. In case that a beam is
steered to an angleθ0, the corresponding phase term can be
conveniently extracted fromam as,

u =
d

λ
(sin θ − sin θ0). (4)

If FP (z) is factorized into,

FP (z) = F (1)
p1

(z)F (2)
p2

(zp1) · · ·F (n)
pn

(zp1p2···pn−1), (5)

the AAP is readily applied by deeming the subarrays as
radiating elements. We define them-th subarray factor with
K elements by the following form,

F
(m)
K (z) = a

(m)
0 + a

(m)
1 z + · · · + a

(m)
K−1z

K−1, (6)

wherea
(m)
i ∈ C, (0 ≤ i ≤ K − 1).

3. ULA FACTORIZATION THEOREM

In this section, the previously reported ULA Factorization
Theorem is reviewed.

Before describing it, some terminologies are defined. A
finite order polynomial with the first term1 and all the other
non-zero coefficients1 is called Unit Coefficient Polynomial
(UCP), e.g., 1 + x + x5 + x10. In general, UCP corresponds
to ULA with non-uniform spacings. A polynomialf in UCP
is called irreducible iff cannot be factorized into products
of lower order polynomials in UCP. If a polynomialf is
factorized into lower order polynomial asf = f1f2f3 · · · fp, a
product of the formfifj · · · fq, (i, j, · · · , q ∈ {1, 2, 3, · · · , p}),
is called sub-product off or shortly sub-product. With the
convention, the following theorem is found,
[ULA Factorization Theorem]] Let P be a positive integer
with factorizationP = p1p2 · · · pn, where everypi is a prime
but not necessarily distinct each other. Then the following
factorization of the geometric series is possible,

ΨP (x) = Ψp1(x)Ψp2(x
p1)Ψp3(x

p1p2) · · ·Ψpn
(xp1p2···pn−1).

(A)
where,

ΨP (x) = 1 + x + x2 + x3 + · · · + xP−1 =
xP − 1
x − 1

.

The factorization has the following properties,
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(i) (A) is irreducible in UCP,
(ii) Sub-product ofΨP (x) in (A) is UCP,

(iii) If a factorization ΨP (x) =
∏

i Fi exists, where every
Fi is UCP, then everyFi is expressed by sub-product
of ΨP (x) in (A) by appropriately choosing the order of
p1, p2, · · · , pn.

We describe an application of the theorem. We attribute
a Schelkunoff polynomialΨ3(x) = 1 + x + x2 to a tree
in Fig.1. The term is an analogue of ‘tree’ in the discrete
mathematics[3], “a loop free connected graph.” If a factor-
ization formula is given, we can create a tree in accordance
with order of factorization of polynomials. For example,
Ψ3(x)Ψ2(x3) = (1 + x + x2)(1 + x3) and Ψ2(x3)Ψ3(x) =
(1+x3)(1+x+x2) correspond to Figs.2 and 3, respectively.
If the order of multiplication is different, the resultant tree
is different. It is noted that expanded factorization formula
{(1+x3)(1+x+x2)} = 1+x+x2 +x3 +x4 +x5 = Ψ6(x)
should correspond to Fig.4. With the convention, the map
from the factorization formula to the feed network is well-
defined. The resultant feed network is not necessarily a tree
for general array factorization formula. For example, Fig.5
corresponds to{Ψ2(x)}2 = (1 + x)2. The necessary and
sufficient condition for the feed network being a tree is that
expanded array factorization formula is UCP.

A tree is called irreducible if no finer decomposition exists.
By using the map defined in the above, we have the following
theorem as a corollary,
[Feed Network Factorization Theorem]] There is an isomor-
phism between the factorization formulas of uniformly-spaced
ULA and the trees. In particular, a tree for (A) is irreducible.

Fig. 1: Ψ3(x) tree

Fig. 2: Ψ3(x)Ψ2(x3) tree

Fig. 3: Ψ2(x3)Ψ3(x) tree

Fig. 4: Ψ6(x) tree

Fig. 5: {Ψ2(x)}2 feed network

The theorem tells us all the possible topologies of the
feeding network. For example, if a uniformly-spaced ULA
with 8 elements is given, allowable factorization is found to
be as follows:

Ψ8(x) = Ψ2(x)Ψ2(x2)Ψ2(x4) = Ψ2(x)Ψ2(x4)Ψ2(x2)
= Ψ2(x2)Ψ2(x)Ψ2(x4) = Ψ2(x2)Ψ2(x4)Ψ2(x)
= Ψ2(x4)Ψ2(x)Ψ2(x2) = Ψ2(x4)Ψ2(x2)Ψ2(x)
= {Ψ2(x)Ψ2(x2)}Ψ2(x4) = {Ψ2(x)Ψ2(x4)}Ψ2(x2)
= {Ψ2(x2)Ψ2(x4)}Ψ2(x) = Ψ2(x){Ψ2(x2)Ψ2(x4)}
= Ψ2(x2){Ψ2(x)Ψ2(x4)} = Ψ2(x4){Ψ2(x)Ψ2(x2)}
= {Ψ2(x)Ψ2(x2)Ψ2(x4)},

where product of polynomials inside the brackets{·} is
regarded as being expanded.

4. ALGEBRAIC CURVES AND ARRAYS OF ARRAYS

PRINCIPLE

We will try to generalize the previous theorems to the case of
general linear arrays with arbitrary excitations as in (5) and
(6). To achive, we need to observe that (5) is a product of
functions over covering spaces of algebraic curves[4][5]:

z
hp1−−−−−−→ zp1

hp2−−−−−−→ zp1p2
hp3−−−−−−→ · · ·

· · · hpn−1−−−−−−−−→ zp1p2···pn−1 , (7)
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wherehn : C
∗ → C

∗; z �→ zn, andC
∗ is defined to be the set

C−{0}. Eachhn gives unbranched covering[5] and the tower
corresponds to Kummer extensions[6] of algebraic functions.
If we putx = zp1p2···pm andy = zp1p2···pm−1 ∈ C

∗ for them-
th part of the covering,x−ypm = 0 is an irreducible algebraic
function. In the algebraic extensionC(y, x)/C(x), we have
C(y, x) = C(x)[x1/pm ] ∼= C(x)[y]/(ypm − x) ∼= C(y), thus
we can writeC(y, x) = C(y). We attributeC(x) the same
meaning to that in the tower (7). If we write the covering space
of the m-th tower Y (∼= C

∗) and the base spaceX(∼= C
∗),

then hpm
: Y → X is a Galois covering and corresponding

fundamental gourps areπ1(X) = Z and π1(Y ) = Z,
respectively[5]. Indicating# as induced homomorphism by
a continuous function, the Galois groupGal(Y/X) of the
covering space is calculated with the aid ofhpm#(π1(Y )) =
pmZ as follows:

Gal(Y/X) = π1(X)/hpm#(π1(Y )) = Z/pmZ.

From now on, we write am-th root of unity as ζm =
exp(2πj/m). All the roots of x − ypm = 0 are expressed
by y = ζn

pm
· x1/pm , (0 ≤ n < pm). The algebraic

extensionC(y)/C(x) becomes a Galois extension in ordinary
sense[6] becauseζn

pm
: C(y) → C(y), x1/pm �→ ζn

pm
· x1/pm

gives automorphism of the field extensions whereC(y) =
C(x)[x1/pm ] and ζn

pm
∈ C(x). In this case, the Galois group

Gal(C(y)/C(x)) is homeomorphic to a cyclic groupZ/pmZ.
In algebraic geometry, the following equivalence is

known[5],

Gal(Y/X) ∼= Gal(C(y, x)/C(x)) ∼= Galanal(Y/X). (8)

Gal(Y/X), Gal(C(y, x)/C(x)), andGalanal(Y/X) stand for
topological, algebraic, and analytical (as complex manifold)
Galois groups. This is a consequence of GAGA[7]. Therefore
we will freely use desired Galois groups for the rest of the
manuscript.

Let us try to give physical interpretation of the action of
Galois groups. If we have the following factorization,

FP (z) = F (1)
p1

(x)F (2)
p2

(xlm), (9)

then the Galois groupGal(C(x)/C(xlm)) acts asF (1)
p1 (x) �→

F
(1)
p1 (xζk

lm) with the value ofF (2)
p2 (xlm) remains unchanged.

The action corresponds to change of observation ‘angle’ in
u-space: At first trial a signal is put in the direction of the
main beam and then it will be changed in the direction of
a grating lobe,i.e. an action of the Galois group. This is a
simple and natural interpretation. Even for general angles not
limited to the direction of the main beam, the symmetry is
valid. That is why the Schelkunoff polynomial is a function
over the covering spaces.

5. ALGEBRAIC STRUCTURE OF GALOIS TOWER

In the previous section, the tower of Galois covering is
considered as algebraic curves defined onC

∗’s. However the
physics of the antenna arrays is adequately described on the
Schelkunoff’s unit circleS1 in the complex plane. Fortunately

C
∗ andS1 are homotopy equivalent and topological properties

are identical.
Let h(y) = e2πjy = x be the universal covering ofh : R →

S1. The fiberh−1(x) of arbitrary pointx on S1 is isomorphic
to Z. The fundamental groupπ1(S1, x) of the base pointx acts
as automorphism onR, and is homeomorphic toZ. Choose
y ∈ h−1(x). m ∈ Z = π1(S1, x) acts asm : y �→ y + m. The
action is effective on the fiber andh : R → S1 is therefore
a Galois covering. Owing to the Galois theory of covering
spaces[5],Gal(X̂/X) = π1(X) and X ∼= X̂/ Gal(X̂/X) =
X̂/ π1(X) are valid for the universal coveringh : X̂ → X. In
the case ofh : R → S1, the action of Galois groupπ1(S1) =
Z to the pointy results to an orbity + Z. The quotient space
is isomorphic toR/Z and is identified with the base space
S1. All the subgroups ofπ1(S1) = Z are of the formmZ

with m ∈ N. They determine all the possible coverings with
base spacesR/(mZ) ∼= S1 by the Galois correspondence. By
using the universal coverings, the corresponding tower of (7)
is expressed by the following commutative diagram,

R R R

h=h
(u)
1

� h(u)
p1

� h(u)
p1p2

�
S1

hp1−−−−→ S1
hp2−−−−→ S1

· · ·

R R� h
(c)
p1···pn−1

�
S1

hpn−1−−−−→ S1,
(10)

whereh
(u)
k : y �→ e2πjky andhk : x �→ xk, ... etc..

Let us classify the tower by algebra. First of all, note that
the following proposition,
[Proposition] Let {pi}i∈N be a sequence of positive integers
not necessarily distinct each other. Then arbitraryN ∈ N can
be expressed by0 ≤ mi < pi, (i ∈ N) uniquely as follows:

N = m1 + m2p1 + m3p1p2 + · · ·
+mnp1p2 · · · pn−1 + · · · . (11)

In particular, defineNP = N mod P , and then the following
is valid,

Np1p2···pn
= m1 + m2p1 + m3p1p2 + · · ·

+mnp1p2 · · · pn−1 mod p1p2 · · · pn.(12)

The above representation of integers forms a projective
system[8] with directed setΛ of indicesk ≤ l in case that
k divides l. Its definition is as follows: LetΛ be a directed
set as indices of a direct product of groups

∏
λ∈Λ Gλ. The∏

λ∈Λ Gλ is called a projective system if for all theλ ≤ µ,
there exist homomorphismsψλµ : Gµ → Gλ, whereψλλ is
identity, and for allλ ≤ µ ≤ ν, it has the propertiesψλν =
ψλµ ◦ ψµν . For example in (12), ifp1p2 · · · pm|p1p2 · · · pn,
then ψp1p2···pm, p1p2···pn

: Np1p2···pn
�→ Np1p2···pm

, and
we can readily observe that the the definition is satisfied.
Therefore (12) forms a projective system. The towerZ ⊃
p1Z ⊃ p1p2Z ⊃ · · · of subgroups of additive integers
corresponds to terms in (11). Giving a projective system is
equivalent to specifying a decreasing series of the subgroups
due to inclusion. The tower ofS1 in (10) has one to one
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correspondence with the system and all the configuration is
determined by the identification.

Now, we investigate how much general the tower (7) is. The
following well-known theorem[6] helps.
[Jordan=Hölder Theorem] Let G be a group having the
following two composition series,

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gr = e,
G = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hs = e,

thenr = s, and their quotient groups can be rearranged to be
identical.

G0/G1, G1/G2, · · · , Gr−1/Gr,
H0/H1, H1/H2, · · · , Hr−1/Hr,

In particular, if we choose all thepi’s in (12) to be primes
and putP = p1p2 · · · pn, then the following composition series
is obtained,

Z/PZ ⊃ p1Z/PZ ⊃ p1p2Z/PZ ⊃ · · ·
⊃ p1p2 · · · pn−1Z/PZ ⊃ 0. (13)

The quotient groups are of the formZ/piZ. The above
resolution is the longest as a composition series, so is the
corresponding tower of the Galois coverings. Finally consid-
erations given so far are summarized into a theorem,
[General Array Factorization Theorem] A Schelkunoff
polynomial of a linear array withP elements can be regarded
as a function over a tower of Galois coverings. Arrays of
Arrays Principle is determined by a projective system of
Z/PZ. In particular, the system which corresponds a com-
position series ofZ/PZ gives the longest tower of the Galois
coverings.

The corresponding feed network theorem can be obtained by
the same procedure as that in ULA case,i.e. by considering the
sub-product of array factors as well as order of multiplications.
We attribute it with the symbolAP , and we have

AP

(∏
λ∈Λ

Gλ

)
, (14)

where the projective systems are those in (13).

6. ABSOLUTE ARRAYS OF ARRAYS PRINCIPLE

In the previous sections, finite lengths were assumed for the
tower of Galois coverings,i.e. finite arrays. The theory will
be extended to the case of infinite arrays.

The universal covering can not be constructed within the
category of algebraic curves because the corresponding mor-
phism is exponential. Grothendieck[10] discovered a method
to overcome it by introducing théetale fundamental group
πet

1 (X) which is the projective limit of a category of algebraic
curves as follows:

πet
1 (X) = lim←−

Y/X: fin. ur. Galois

Gal(C(Y )/C(X)),

= Gal(Mur/C(X)), (15)

where the projective limit is taken over all the finite unramified
Galois extensions of algebraic curves.X = C

∗ and Y = C
∗

in our case, and it is noted that (7) is a projective system of a
tower of algebraic extensions.Mur is the maximal unramified
extension of the function fieldC(X), andGal(Mur/C(X)) is
generally called the absolute Galois group[9]. For the universal
coveringh(c), we haveh(c) : C = Y → C

∗ = X. It is known
that the topological Galois groupGal(Y/X) is homeomorphic
to π1(X), and for (15) we have the following[10],

πet
1 (X) ∼= π̂1(X), (16)

where π̂1(X) is the profinite completion by taking the pro-
jective limit of π1(X). In the case of the Galois coverings
of linear arrays, we can defineM = C(X)(S) with S =
{X1/n|n ∈ N} for C(X). Then we haveMur = M and the
following[8][9],

Gal(Mur/C(X)) = Ẑ, (17)

where Ẑ is the profinite completion ofZ, and is related
to profinite completionsZp (p-adic integers) with respect to
primesp’s as follows[8][9]:

Ẑ = lim←−
n∈N

Z/nZ ∼=
∏

p: all primes in N

Zp. (18)

If we choose an element of̂Z, we have the corresponding
unique projective system. For finite arrays, we can regard those
to be zero in the part with more than the number of radiating
elements in the projective system. Now all the projective
systems are contained in̂Z, and it should be regarded as the
absolute Galois group of the linear antenna arrays. Accounting
the trees of feeding networks with all the possible permutations
including sub-product as in the previous section, we finally
have the following ‘Absolute Arrays of Arrays Principle,’

AP Ẑ. (19)

7. SUMMARY

Schelkunoff’s arrays of arrays principle is naturally interpreted
with a tower of Galois coverings of algebraic curves. The
absolute arrays of arrays principle is formulated by theétale
fundamental group with all the possible symmetries of feeding
networks.
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