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Abstract

This paper presents an alternative analysis of obtaining radiated EM fields on a human head, using Per-
turbation technique. A circular-loop antenna is use as a radiator, and the head is modeled by a spheroid. This
method make use of dyadic Green’s function to obtain the incident EM field. The spheroid is approximated
using Taylor series expansion, and coefficients for transmission and scattering EM field are found using the
perturbation method. These coefficients are also being expanded into Taylor series like terms, and with the
boundary conditions on the spheroid surface, the coefficients can be found.

I. Introduction

THE harzard radiation on human body by EM waves energy have been of interest in many research
areas, [1], [2], [3] and [4]. Apart from harmful effects, EM radiation have been use for therapeutic

purposes in cancer tumor treatment, [5]. Thus, it is necessarily to determine the deposition of EM
energy into the human body.
In the research area of EM waves, numerical methods have been widely used. Such works can be

seen in papers by Lazzi and Gandhi [6], Jensen and Rahmat-Samii [7]. One of the advantages is that
objects can be modeled with high accuracy. However, such methods require lot of computation time
and storage space.
Another popluar way of obtaining EM radiation is by using analytical approach. The main advantage

of using analytical solution can be computed faster and uses less storage. An example of such work is
the paper by Uzunoglu and Angelikas, [5].
Recently, the paper by Li et al, [8], demonstrated the rigorous formulation of EM fields within a

spherical multilayered media. Dyadic Green’s function was use, and the current sources are arbitrary,
such that they can be located in one of the layers.

II. Formulation of The Problem

Consider the geometry in Fig. 1, where the origin is located in the center of the spheroid. The
circular antenna is located directly above spheroid in the z-direction. Many works had been done in
deriving the EM waves by circular antenna, and some of them are found in [9], [10], [11] and [12].
Assume that the current in the antenna is I(φ′), the volumetric current density can be expressed as :

J(r′) =
I(φ′)δ(r′ − ρ0)δ(θ′ − θ0)

r2
0 sin θ′

φ̂ (1)

where ρ0 = r0
sin θ .

In spherical coordinates, the equation of spheroid can be written as, [13] r = h√
1−ν sin2 θ

where

ν = 1− (
h
w

)2
, and h

w > 1. The unit normal vector on the surface can be written as n̂ = nrr̂ + nθθ̂.
The equation for the E-field is given as [14] :

E = iωµ0

∫∫∫
V

GEJ0(r, r′) · J(r′)dV ′ (2)

Substituting (1) into (2), the E-field can be written as :
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where > and < attached to E refers to E-field when r > ρ0 and r < ρ0 respectively. δm0 and Dmn are
defined in [9]. The coefficients ΦM<
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.
The magnetic field can be obtained by using H = 1

jωµ0
∇× E.

(3) is the E-field radiated by the antenna in the free space and they will be denoted by Hi and Ei.
The transmitted fields in the spheroid can be written as :[
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where k1 =
√

εrk0, εr is the relative permittivity of the spheroid. The constants α and ζ are unknown
transmission coefficients. For scattered field Es, α and ζ in (6) are placed by scattering coefficients β
and γ respectively.
For a small loop antenna, the current distribution will be approximately constant : I(φ′) = I0φ̂.
Applying the small antenna model, the boundary conditions can be written as :

n̂ × Ei = n̂ × (Es +Et) (7)
n̂ × Hi = n̂ × (Hs +Ht) (8)

III. Determination of Expansion coefficients

A. Perturbation Technique

Perturbation approximation can be use to solve for the coefficients, which is demonstrated in [15].
Perturbating terms can be added, and each higher order terms must converge. The parameters and
unknown coefficients are expanded using Taylor series. By solving (7) and (8), the first 4 orders of
coefficients were obtained.

IV. Numerical Computation

The numerical parameters that are use in the computation are : Relative permittivity εr = 42,
frequency f = 5 MHz, antenna radius r = 0.25m, and antenna position θ0 = π

3 rad.

A. Tranmission and Scattering Coefficients with varying ν

Setting h = 0.1m and w = 0.06m, ν = −1.78. Since |ν| > 1, the coefficients computed fails to
converge. Setting w = 0.08m, |ν| = 0.56, Table I shows the numerical coefficients terms computed.
The number of orders to be use for computing E-fields will depends on the aspect ratio of the spheroid.

For a large ratio, more higher order terms will be needed to achieve a respectable accuracy. If the ratio
is too large, where |ν| is larger than 1, perturbation method will fail as the coefficients and E-fields will
fail to converge.

B. Tranmission and Scattering Coefficients with varying frequency

By varying the frequency at which the antenna operates at from 0.5MHz to 500MHz, the convergence
of β and α are checked. Calculations are based on |ν| = 0.56. At frequency 0.5MHz, k0r0 = 2.62×10−3.
The coefficients converge rapidly with increasing order. At frequency 5MHz, k0r0 = 2.62× 10−2. The
values of the coefficients are as shown in Table I. At this frequency, the convergence is slower than
0.5MHz. When the frequency is further increased to 500MHz, k0r0 = 2.62, the antenna can no longer
considered small, and thus, the current distribution in the antenna varies with φ and convergence fails.
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TABLE I

β and α for the first 10 values of n for ν = 0.56

β, Orders α, Orders, A(B) ≡ A × 10B

n 0th 1st 2nd 3rd 0th 1st 2nd 3rd

1 0.512 0.017 0.0090 0.0053 1.20(−6) 1.37(−6) 1.17(−6) 9.64(−6)
2 0.536 0.008 0.0031 0.0016 3.68(−9) 4.25(−9) 3.67(−9) 2.93(−9)
3 0.670 0.222 0.0890 0.0308 6.36(−13) 2.94(−11) 5.06(−11) 5.97(−11)
4 0.769 0.056 0.0184 0.0090 7.03(−17) 1.12(−15) 1.86(−15) 2.14(−15)
5 0.822 0.011 0.0034 0.0292 5.38(−21) 2.37(−20) 3.44(−19) 8.18(−19)
6 0.854 0.075 0.0232 0.0099 3.03(−25) 1.15(−23) 1.30(−22) 2.70(−22)
7 0.876 0.031 0.0096 0.0945 1.30(−29) 2.61(−28) 9.49(−28) 5.46(−27)
8 0.893 0.007 0.0025 0.0273 4.43(−34) 2.75(−33) 2.80(−32) 2.97(−31)
9 0.905 0.044 0.0128 0.0747 1.21(−38) 5.35(−37) 7.32(−36) 2.49(−35)
10 0.915 0.021 0.0065 0.0154 2.77(−43) 6.98(−42) 3.36(−41) 1.05(−40)

C. Convergence of E-fields

The convergence of E-fields as the order increases is investigated. The parameter of the spheroid is
set to h = 0.1m, w = 0.08m, and |ν| = 0.56. The transmitted field in the spheroid is computed at
r = 0.05m, and θ = π

4 rad. At n = 10, the E-field is about 7 orders smaller than n = 1, which implies
that the contribution at n > 10 can be ignored. For scattered field computed at r = 0.102m, at n = 10,
it is almost 7 orders smaller than at n = 1. Therefore, it is only necessarily to compute for the first 10
n terms only.

D. Approximations for Higher Order of E-fields

From Fig.2, the converging pattern allows for a graphical approximation of higher order of E-fields.
It appears that E-field at different orders are bounded by 2 converging exponential curves. For odd
orders (first and third), the E-fields falls on a lower boundary curve, while even orders’ E-fields fall on
a upper boundary curve. By using this approximation, higher order of E-field can be predicted.

E. SAR with varying antenna position

The SAR in the spheroid is calculated using the equation (as used in [5]) : SAR = σ|E|2
2ρ where the

conductivity and density of spheroid are assumed to be constant at σ = 0.65S/m and ρ = 1000 kg/m3

respectively. Table II shows the maximum SAR absorption on the surface of the spheroid at different
antenna positions. From θ0 = π

6 to θ0 = π
2 rad, the SAR increases by a factor of almost 30.8 dB.

Fig. ?? show the SAR distribution within the spheroid. The distributions are plotted for half, quarter,
one-eight and one-sixteenth power. The maximum power being absorb tends in the direction of the
antenna location. The heating pattern agrees with the results obtained in [5].

V. Conclusion

From the discussion above, perturbation techniques generally achieve the objective of predicting the
EM fields and enable fast computation to obtain the result. However, there are some limitations due
to the assumptions made.
Variations to the same problem can be made so that the model can be more realistic and accurate.

Such variations includes having different current distribution in the antenna, different form of antenna
and multi-layered spheroid.
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TABLE II

SAR distributions at different antenna’s position

θ0, rad π
6

π
3

π
2

Max SAR, W/kg 0.0002911 0.095636 0.361657
θ at Max SAR, rad 0.958642 1.06644 1.57079
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Fig. 1. Spheriod with circular wire antenna
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Fig. 2. Approximation of higher orders
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Fig. 3. SAR distributions within
spheroid for θ0 = 30o
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Fig. 4. SAR distributions within spheroid
for θ0 = 90o


