PROCEEDINGS OF ISAP ‘85 043-6

ELECTRCMAGNETIC WAVE PROPAGATION
IN
BIANISOTROPIC MEDIA
a coordinate-free approach

Hollis C. Chen

Department of Electrical & Computer Engineering
Ohio University
Athens, Ohio 45701 USa

ABSTRACT

The object of this paper is to present a coordinate-free method in treating
electromagnetic wave propagation in a bianisotropic medium. Based on the direct
manipulation of vectors, dyacdics and their invariants, the method eliminates the
use of coordinate systems. It facilitates solutions and provides results in a
greater generality. The paper contains the following results in coordinate-free
forms: (1) the eigenvalue problem formulartion of waves in bianisotropic media,
{2) the dispersion equation, {3) the polaerizations of waves in bianisotrogic
media, and (4) the determination of the directions of {ield vectors.

I. INTRODUCTION

With the rapid advance in technology, more and more materials used in
applications are anisotropic. In the microwave frequency region, a ferrite
is an anisotropic medium characterized by a tensor permeability and a sclar
permittivity (i), while, on the other hand, a plasma is characterized by a
tensor permittivity but a scalar permeability {[Z]. 1In the infrared Irequency
region, both permitziivity and permeability of a medium‘can be anistcropic as
occurs in Yttrium Iron Garnet (Y1G) [3]. In this case we have a bianisotropic
medium. 1In this paper, we shall present a coordinate-Zree method to treat
wave propagation in bianisotropic media.

IT. EIGENVALUE PROBLEM FORMULATION AND DISPERSION EQUATION_ _
For a monochromatic plane wave of the form expli(k*r-wt)], the Maxwell
equations for a bianisotroric mediur in a source-free region take the form

o

wB = wi Lu*H = k x

(1)
o
whD = wg £°% = -k x E (2)
o
where k is the wave vector, and i and € are the relative permeability and
permittivity tensors respectively. For simplicity, we assume that both
i

b and € are symmetric and positive definite matrices but they do not

necessarily commute.

Elimination of H or E from the above equations yields

MeN*E = AE (3)
or o

NeM*H = AH (4}
where - -1 .=

M = “{kxI) (s)
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where k is the unit vector in the dl*ec:'on of wave vector K. I is a unit
matrlx, and the antisymmetric matrix K x I is defined according to (k x Ti*C =
k x € for any vector c [4].

According to Eq. {3)., E is an eigenvector of matrix MeN, corresponding
to the eigenvalue A=-1/n", where n = ck/w is the index of refraction. Similarly,
Eg. (4) shows that H is an eigenvectcr of matrix N°M, corresponding to the same
eigenvalue X.
Furthermore, Egs. (1) and (2) yield the eigenvalue problems for D and B:
(M*N) "*D = AD (N
and - = -
(N*M) "*B = B (8)

where the superscript T denotas the transpose of the matrix. _Thus D and B
are the eigenvectors of the transposes of matrices M*N and N°M, respectively.

- - )
In terms of the refractive index vector n = nk, Eq.(3) may be rewritten
as

[E+(axD) i e taxDr E = o (9)
which will have nontrivial solution E provided that the determinant of the

coefficient matrix vanishes; that is

= - = _1 - =

Je+ taxIysu ™ o (nxD)| = o (10)
Exganding the above determinant according to the Cayley-Hamilton Theorem [4],
we obtain the dispersion eguation in a coordinate-free form:

An4 - Bn2+C =0 (11)

where _ _
A= (keer k) {keu*k)

=i

5 = Re E‘[[(ad}g)';]? - (adid)-nlek

c = luel

Eg. (1!} shows that the index of vafiraction n depends on the direction of
wave propagat:ion k.

III. POLARIZATIONS OF WAVES
Now let us examine the polarizations of the field vectors in a bianiso-
tropic medium. Taking the cross preduct of Eg. (2) with 1its complex conjugate,
and using the identity

(adj R) e+ (Gxv) = (A *a)x(ATv) (12)

we obtain

DxD Ez {adj E)'(éxé‘)

2 - - %
(1/w™) kk* (#xd } (13)
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similarly, from Eq. (1), we have

éxé'= ui {adj E)‘(ixﬁr
= (/W) Kke (ExED) (14}
or . 2 2y=( = ee - o
HxB = (1/uw “OI“I’ pekk* (ExE ) (15)

- - - -k - - - =¥
Egs. (13, (14), and (!5) show that DxD , BxB and HxH vanish when ExE
vanishes. In other words, if the vector E is linearly polarized (ExE = o},
so are the field vectors D, B, and H.

- -
Substituting Eq. (15) into Eg. (13), we findé that the vector ExE
satisifies the following homogenecus equation:

{agj € -ttnsu-ni/lnlinn}-(ExE) = o (16)

Thus, for nonzero vector ExE to exist, the determinant of the coefficient
matrix of Eq. (!16) must vanish; that is,

(nh=€-a) (n-l"n)-|

mn

= o (17

=N

Hence we can conclude that the plane waves in a bianisotropic medium are
always linearly polarized except when the refractive index vector n satisifies
condition (17). 1In that case, the wave can have any polarization. Condition
(17) implies that the discriminant 4 = B -4AC of the dispersion Eq. (11) is
equal to zero. That is, when the refragctive index vector n satisifies the
condition (17), the two solutions in a~ of the dispersion equation become
equal. Those directions of the wave nQrmal that cause the discriminant & to
vanish and yield two equal roots for n~ are called the optic axes of the
bianisotropic media. 1In summary, aside from the optic axes, for each direczion
of wave normal k, there are ({in generzl} two linearly polarized waves pro-
pagating at different phase velccities in a bianisotropic medium.

DIRECTIONS OF FIELD VECTORS

For a given refractive index vector n = nk, the field vectors of the plane
wave in a bianisotropic medium_are completely determined. To show this, we
dot-premultiply Eg. (9) by adju and obtain

[(adjp)*€-(a*L*n)TI'E = - (n*u*E)n (18)

Thus the direction of E depends on whether the matrix [(adjﬁ)'g-(a';'ﬁ)fl
is singular or nonsingular. 1In the_nonsingular case, we dot-premultiply
Eg. (18) by the inverse of [(adju)*€-(n*u*n)I), and obtain the direction
of E as

e = {adj [(adjm) +E- a-p-m)T] }on (19)
The directions of other field vectors follow from the Constitutine re-
lations and the Maxwell equations:

a =eoE-{adj[radjﬁ)~5—(5-ﬁ-6)?)}'B (20)



b = (i/¢) (nxe) {21)

VTR (22)
o

h

On_the other hand, if the matrix [(ad]ﬁ)'g:(;‘g:é)i] is singular, or
A= (n'ﬁ’n)/lﬁl is an eigenvalue of the matrix A =0 °*E, the inverse of
the coefficient matrix does not exist. In this_case, we may express the
dispersion equation and the adjoint matrix of (A -AI) as
Kepcadjl{adju) “e- (n*u*n)I)°k = o 2N
and _ _
adj (A-AI) = Cuu-¢ (24)

respectively, where C is an arbitrary constant and u is an eigenvector of
A corresponding to the eigenvalue 2X.

Substitution of Eq. (24) intoc g. (23} yields the condition imposed
on the eigenvector u:

G'e*k = o (25)
From Eq. (4), we obtain
(|GeE]- (n*€*n) (r*u=n)1 (u"B) = o (26)

To satisify condition_(26), two possibilities arise: u*B = o or u*B # o.

In the first case (u*B = o), B is perpendicular to u._  But, according to
Maxwell's equations, B must also be perpendicular to n. Thus the direction
of B is parallel to their cross product:

b = uxn (27)

The directions of the remaining vectors are determined by the Maxwell
equations and constitutive relatiors:

Ros (/) @xa)
d = -(1/c) (nxh) {28)
e = -(1/e c)E e (ixh)

(o]

In the second case (u°B # o), we must have

|u<€l- (ree=n) taspen) = o (29)

This is the condition (17) dencting the coincidence of the given wave normal
with the optic axes. In this case, the field vectors are limited only by
the conditions implied by the Maxwell equations.
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