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Complex resonant frequencies and the associated modal fields play an
important role in the theory of transient scattering. These resonant modes,
which behave as damped oscillations, form the basis of the singularity
expansion method (SEM) [1]. While best suited to transient field evaluation at
late observation times, recent efforts to push SEM into the early time domain
have highlighted diffjiculties that pertain to the need, or not, of including an
entire function in the frequency domain representation. 0f the various
interpretations of the entire function [2,3], the most cogent appears to be the
one based on the initial interaction of the Incident wavefront with the
scattering object [4,5]. The wavefront approach retains its significance,
however, even at later times when the wavefront has had an opportunity to
sample the scatterer by successive traversals before reaching the observer.
These multiple wavefront arrivals, which now obscure the scattering
process,can then be combined collectively into physically more appropriate
resonant modal fields. The bilateral wavefront-resonance interplay has been
exploited to construct a hybrid formulation that combines both wave types in
unique proportion to optimize description of the transient response for all
observation times [5,6]. A remarkable feature of the resonance construction
by wavefront summation is the accuracy of the complex resonances, even
including those at the 1lower frequency end, when high-frequency asymptotic
(ray) methods are used to approximate thz scattering process [7,8,9].

Since the shape and composition of a scatterer determine the resonances
in the complex frequency plane, their distribution may be employed for object
classification and identification. For targets comprising composite
substructures (see Fig. 1), one may consider partial resonances characteristic
of each substructure in isolation, and then explore the perturbation of these
isolated resonances when the substructures are assembled to form the
composite object. By this approach, it is possible to explore the effect on
the resonance map caused by changes in a substructure, thereby providing
insight into the scattering mechanisms that establish a compound resonance.
The evolution of a partial resonance and its modification by other object
features is explained in its most basic form by wavefront interactions taking
place between identifiable scattering centers. The totality of multiple
interactions can be 'collectivized" in many alternative forms that highlight
different aspects of the scattering process and resonance formation.

Success in this endeavor depends critically on a systematic ordering of
the multiplicity of wavefront events. Here, it may be useful to employ
diagrammatic techniques, which chart the individual interactions and, by the
existence of various "closed loops", point the way toward their selective
collective treatment. Accordingly, borrowing from system theory [10], we
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introduce scattering centers as nodes, and propagation functions between
scattering centers as directed branches, in a signal flow graph that models
the scattering process. For complicated scatterers, the individual propagation
and scattering events are described by the geometrical theory of diffraction
(GTD), thereby embedding a high frequency constraint in the procedure.
However, because of the remarkable accuracy of all of the complex resonance
frequencies constructed in this manner for certain simple object shapes
[7,8,9], it is reasonable to expect that the GTD schneme can likewise generate
the resonance configuration for more complex targets.

The above-described theory of transisnt scattering, linking wavefronts and
resonances by formal matrix manipulation and by the flow graph approach, is
contained in a forthcoming publication [5]. It is briefly reviewed here and
then applied to the construction of the transient field and complex resonance
equation for a variety of object shapes that demonstrate different features of
the flow graph technique, Emphasis is on two-dimensional structures or,
equivalently, on certain phenomena on three-dimensional structures with
rotational symmetry. Included are smooth convex objects, objects with edges,
convex-concave shapes, and layered media (Fig. 2). For some of these, the
interaction functions may involve complex ray fields, while for layered media,
the identification of partial resonances is 1linked with ¢the previously
introduced "collective ray" [11]. The presentation stresses the options
available for ordering the composite resonances according to partial subgroups,
and the physical features of various groupings.
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Scattering centers and interaction mechanisms for a composite scatterer.
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Fig. 2 Various object shapes, interaction paths, and simple flow graph. b), c),
d), and e) may involve complex rays [12]. e) consists of high Q (internal)
and low Q (external) interactions. In f), all internal reflections after
the first are treated collectively. In g) u and D, are the angular wave-
number and the diffraction coefficient of the creeping waves, respectively.



