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The modeling of electromagnetic wave propagation and diffraction in a com-
plicated enviromment requires use of judicious approximations because rigorous
formulations usually cannot be translated into practically useful results over
the broad ranges of observables that may be of interest. For idealized '"canon-
ical" problems, which incorporate some particular feature of the environment,
rigorous methods do yield success and can point the way toward approximations
that can then be extended to the more general non-canonical case. Spectral
representations of the wave fields are among the most powerful of such rigorous
methods. At high frequencies, and with k and w denoting the vector spatial and
temporal spectral wavenumbers, respectively, the plane wave spectral elements
can be compacted by constructive interference to small spectral intervals around
a source and receiver dependent central spectral value (kg,w) which is the ap-
propriate one for the wave group that establishes the maximum field at the ob-
server [1,2]. The trajectory of this wave group is the ray path (direct, re-
flected, refracted or diffracted) from the source at r to the receiver at r'.
By this shrinkage, the original global spectrum becomes localized around the
central value [kg(r,r'),w]l. This truncated spectrum can now be tracked through
more general environments, which deviate from the canonical one by changes that
occur over scales large compared to the local wavelength. This localization
applies to propagation as well as diffraction phenomena. If the wave process
is dispersive, the spectral wavenumbers kg and w will also be time dependent.

The canonical (k,w) spectrum is real. Its constructive interference
therefore synthesizes wave processes that involve propagating, undamped local
plane waves. However, for wave processes undergoing focusing, there will be
spatial "shadow'" regions where the wavefields are weak, and similar phenomena
are associated with wavefields that experience leakage and(or) radiation damp-
ing in a lossless environment. Such fields are characterized by evanescent
plane waves with complex k, and their constructive interference occurs around
a central value kg(r,r'). Because Es is complex, the evanescent wave group that
retains this central spectrum intact follows a 'complex ray" trajectory in a
complex coordinate space. Source regions as well as spatial features of media
and scatterers must then be extended analytically into this complex space in
order to ensure that a relevant complex ray reaches the observer at the real
point r.

Tracking constructively interfering evanescent waves along complex rays
has the same advantages as tracking non-evanescent wave groups along real rays.
Such tracking localizes wave processes in complex space which would otherwise
be smeared out in real space; i.e., a compact complex spectral object kg re-
quires a distribution of real spectral objects k. One of the most striking and
familiar examples is a collimated field in the form of a Gaussian beam, which
can be generated either by a continuum of real plane waves or by a single point
source at a complex location. Tracking of such beam fields tinrough complicated
environments comprised of non-planar media, boundaries or scatterers is vir-
tually impossible by repeated global real plane wave analysis and synthesis
but can be accomplished by complex ray tracing because of the localization of
the evanescent spectra [3-6].
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In the formulation of high-frequency propagation and scattering problems
either by local plane wave spectral synthesis or by the physical optics method,
constructively interfering evanescent wave groups are made evident by complex
stationary phase points. 1In the former, the stationary value ES identifies the
central spectral value of the wave group reaching the observer whereas in the
latter, the complex value rg of the space coordinate in the physical optics in-
tegration identifies the point on the complex extension of the surface, from
which the complex ray originates. When both formulations are applied to the
same problem, they yield consistent values kg and rg. While complex spectral
contributions are clearly of importance when they represent the entire field
in a weak-field region, they may be significant even in the presence of non-
evanescent constituents, Examples have shown that evanescent tunneling along
complex rays produces clearly discernible features in ducted propagation [7]
and in scattering from target shapes with concave-convex transitions [8].

Numerical tracing of strongly evanescent fields from source to observer
through the environment is complicated by the fact that the corresponding com-
plex rays penetrate deeply into the complex space. However, interest is fre-
quently confined to less rapidly decaying weakly evanescent fields whose com-—
plex ray paths remain near real space. For beam-type excitation, one may then
examine paraxial approximations that express the field at an off-axis observer
by perturbation about their om-axis (maximum) values. The on-axis complex ray
field can be approximated in turn by partially real ray fields that further
simplify the tracking and evaluation process. Exploration of the quality of
these approximations is important because, if applicable, they lead to sub-
stantial savings in computer time. It should be pointed out that the beam
fields under consideration here are allowed to be strongly affected by the
propagation or scattering process; i.e., complex ray paraxial theory accounts
for complex perturbations of divergence, reflection and diffraction coefficients
and therefore goes beyond conventional paraxial beam optics [9].

Superposition (''shooting') of paraxial Gaussian beams has recently been
employed to model propagation and scattering of non-collimated wavefields [10,
11]. The resulting complex extension eliminates the need for uniformization
of ordinary paraxial ray fields in regions near caustics, shadow boundaries,
etc., because these transitional domains are now displaced into the complex
coordinate space. Thereby, numerical computation is simplified substantially.
However,the smoothing resulting from this beam-shooting eliminates features in
the response that can only be assessed by a critical examination of the paraxial
assumption.

In the presentation, the general ideas pertaining to complex spectra are
discussed and illustrated by examples. Attention is then give to Gaussian beams,
their complex ray tracing, and their paraxial approximation, especially as it
pertains to the beam-shooting method. To assess the quality of paraxial assump-
tions, beam transmission and reflection at strongly curved dielectric inter-
faces and layers is examined, as is the use in the latter of multiple intermnally
reflected ordinary, as well as compact ''collective', complex rays [12]. Com-
plete complex ray tracing is employed to generate the refereance solution in
these cases [4]. The results provide further confirmation of the utility of
complex ray tracing per se, and of its simplification, when valid, via paraxial
approximations.
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