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ABSTRACT

This paper discusses the evaluation of integral transforms with a Fourier or

a Fourier-Bessel (Hankel) kernel. It is shown that, for integrals defined on
the real axis, integration by parts and consideration of some canonical inte-
grals provides directly asymptotic expansions (AE) for these transforms. These
techniques replace advantageously the more involved steepest descent method in
the complex plane.

Several techniques are discussed for the numerical evaluation of these inte-
grals., A new algorithm, exploiting optimally the asymptotic behaviour of the
integrands is introduced. Extensive tests show that the new technique is far
more accurate that currently used algoritims like the Clenshaw-Curtiss rules
or the Romberg adaptative quadrature combined with Shanks extrapolation.

INTRODUCTION

Integral transforms offer now a widespread approach for solving applied electro-
magnetic problems. Among the most useful stand the Fourier and Hankel trans-
forms, which share the property of an oscillatory kernel and are included in
the general expression

I(g) = fz £(x) glgx) dx (1)

where :
- [a,b] is a segment of the real axis x

- g(gx) is an oscillating function [exp(-jgx), é?(qx) and/or their real
and imaginary parts]

- f£(x) is a well-behaved non-oscillating function, which may increase with
gx (but not exponentially). For the sake of simplicity £(x) is assumed
to be real. Complex functions can be handled by investigating, sequen-
tially, their real and imaginary parts.

In most practical situations, the upper limit of integration is infinite, b=x
This prevents the use of standard numerical integration techniques and calls
for specially tailored methods. In the following sections, asymptotical expan-
sions (AE) for I(q) will be constructed and a new numerical technique based
upon these AE will be described.

ASYMPTOTIC TECHNIQUES

Integration by parts has seldom been used in the litterature. However, AE for
the integrals represented in (1) can easily be obtained with this technique [1].



When applied to expression (1) in the particular case g(gx) = exp(jgx), inte-

gration by parts gives the following AE : b
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where flﬁ(x) stands for dnf/dxn and f[g(x) = £(x).
Taking the real and imaginary parts in (2), AE for the cases g(gx) = cos gx ,
sin gx are easily obtained. When the upper limit is infinite, it must be
recalled that lim(b>®) exp(jgb) = 0 in the sense of distributions. Hence, for
the interval [a,®], we obtain
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In deriving expressions (2) and (3), implicit use has been made of the conti-
nuity of £(x) and of its derivatives troughout the integration interval. If
f(x) exhibits some kind of singularity, the expressions (2) and (3) are no
longer valid. The easiest way to overcome this drawback is to consider a cano-
nical integral having an analytical solution and including the same type of
singularity.

For instance, to treat infinite derivatives at some point x=p (which corres-
pond to branch points in the complex plane) the following integrals are useful

I, = Lf (Pz‘xz)%exp(jqx) dx b I, = ﬂj (x—(xz—pz)%) exp (jgx) ax

The exact solutions for I, and I, are listed in 2 . Their AE are :
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Comparing these AE with the values predicted by equation (2) it is concluded
that the terms involving Hankel functions give the specific contribution of
the infinite derivative at x=p .

Once the case g{gx) exp(jgx) has been completely studied, the extension to
other kernels like Bessel or Hankel functions is easily made, replacing them
by their Fourier transforms.

NUMERICAL TECHNIQUES : THE WEIGHTED MEANS ALGORITHM

Asymptotical techniques only provide accurate results for large values of the
parameter g . For smaller g, numerical techniques must be used.
Let us introduce the notation

L0
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The sequence I,  approaches the true value I = Ly when n increases, and
truncation error can be estimated, by using (3) as :
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where f_ and f' are shorthand notations for f(x=a ) and af/dx|__
n n n x—an

Since exp(jqan+1) = —exp(jqan) , a better estimation of I is given by the
weighted mean:
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In practice, if f(x) shows an asymptotic behaviour of the type Cxu, the fn
values can be replaced by n® and, therefore, we get :
I(l) _ (0) (0)
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Under the same assumtions, a careful evaluation of the bracketted term in (5)

shows that it is proportionnal to (n+%)%~2, Hence, a new sequence defined by
12 oM Aty eay L a =t/ (7
n n-% n+

will yield a better approximation to I . By applying recursively the formu-

las (6),(7),..., reducing every time the exponent a by a factor two, it is

possible to extract from an original sequence one unique value which is the

best estimation for I that the sequence can provide.

RESULTS : THE VAN DER POL'S INTEGRAND

The above techniques have been applied to a Hankel transform arising in the
study of wave propagation above the earth. This transform has an analytical
solution due to Van der Pol [3] and can be written :

Q0

2 )
(8) 1= ] JO(Ap) Adx = Y %[(exp(—jkzp) - exp(—jklp))/f)]/(ki—k;)

with ui = ki - Az,

The real parts of the integrand JO(Ap)f(A), and of
the "envelop" £(A) have been plotted in fig.l . Infinite derivatives at
A= ki,kp are readily observable. The above described asymptotic techniques
give the AE 24 .
I 5% [k2 exp(-]kzo) - k) eXP(-Jle)]/(k2~kl) (9)
whose correctness can be checked by direct inspection of (8).
Fig.2 gives the relative errors obtained when evaluating (8) by numerical
techniques. For the same number of evaluations, the weighted means give far
more accurate results that the commonly used Romberg-Shanks algorithm [4].
Moreover, improvement with the number of integration points is more sensible
with the weighted means. Even if accuracy deteriorates when the parameter 0
increases, precision remains better than 0.01 % in the 0<p<10 interval and
for only 56 evaluations of the integrand.
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Figure 1 : Real part of Van der Pol's integrand. (Zero value for X<kl).

s O=2,kl=l,k2=2.
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Figure 2: Relative error E in the numerical evaluation of Van der Pol's
integral as a function of parameter o .

WM 40, WM 56 : Weighted means with 40,56 integration points
R-S 40, R-S 56 : Romberg-Shanks with 40,56 integration points
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