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THEORY OF SCATTERING BY AN OPEN BOQUNDARY
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ABSTRACT. A general and rigorous mathematical theory to analyse
diffraction and scattering of waves by an open boundary is given.
Basing on the theory, a numerical method is derived which is use-
ful and effective to solve various practical problems.

INTRODUCTION. A two-dimensional "open boundary" is a set of open
segments of straight or curved lines of finite length in a plane.
(Fig.1). Similarly, a three-dimensional one is a

set of open segments of surfaces of finite dimensions NS
which may have slots in them. (Fig.2) (For a_detail-

ed definition, the reader is referred to {3].)

Such an open boundary is a model of a set of thin AN
metallic walls, and diffraction and scattering of <:~ -
waves by such walls is analysed by a boundary value
problem for the Helmholtz equation or the Maxwell
equations for the corresponding open boundary. Hence, Fig.1
a study of problems for an open boundary is extremely
important in Electromagnetic theory, and in Antenna
theory as well.

Though many works have been done on boundary value
problems in Electromagnetic theory, boundaries dealt
with in most of them were closed one, and to the
best knowledge of the author, there had existed no KE;)
rigorous and general theory on a problem for an open
boundary before the author's works [1,2,3,4].

A closed boundary, such as a circle or a sphere, Fig.2
is the one which separates the whole space into two parts, an in-
terior and an exterior. As soon as a part of a closed boundary
is removed, the interior domain disappears immediately while sharp
edges appear in the boundary, and it becomes an open boundary.
This simple fact of disappearance of an interior domain and ap-
pearance of edges makes it very difficult to solve a boundary
value problem. For example, a problem with respect to a circle
is easily solved, however, it becomes very difficult if the circle
has apertures in it. We shall study further to know why problems
for an open boundary are so difficult.

Most general and complete works for a closed boundary may be
the ones by H.Weyl[5],A.P.Calder6n[6], and K.Yasuura[7]. Weyl
reduced the problem for a closed boundary to that of solving for
an integral equation of Fredholm of the second kind, which was
then studied in the realm of the theory of Lj-space. However,
as was proved by the author{3], the reduction to the equation of
the second kind was possible because an interior domain existed,
and the Lp-theory was applicable since no edges existed in the
closed boundary. That is, Weyl's method is not applicable if a
boundary is open. Furthermore, as is shown by Theorem 1 below,
the problem for an open boundary is equivalent to that of solving
for an integral equation of the first kind, of which a few has
been known and whose solution is not necessarily in L;. In other
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words, the useful results known on an equation of the second kind
and on the Ljp-space are of no use in our case, and hence, we have
to construct a new theory of an equation of the first kind, con-

sidering that a solution may be a Schwartz's distribution. This
is the first subject of this paper.

Calderdén and Yasuura, independently to each other, established
a'"mode expansion method! Yasuura studied the two-dimensional
Helmholtz equation for a closed boundary C, and showed that Vp=
Ickuk, (k=1,2,--,n), where uyx are pertinent solutions of the
Helmholtz equation and cy are constants, tend to a true solution
v of the boundary value problem uniformly in a domain outside of
C, provided v, tend to a given boundary value g on C. He employ-
ed as solutions uy the ones obtained by the method of separation
of variables, which,in the case of an exterior problem,satisfy the
radiation condition but are not bounded at the origin located in
the interior of C, and which,in the case of an interior problem,are
bounded in the interior of C but not satisfy the radiation con-
dition. Yasuura's method was supported by the facts that (i) the
space {uy} is dense in the space {g} on C, and (ii) a solution v
depends on the boundary data g continuously,which have been proved
with the help of the integral equation of the second kind concern-
ing the boundary C.

Since Yasuura's "mode functions" uyp are either unbounded at the
origin or non-radiating at infinity, they are not adoptable in our
case where no interior exists. Moreover, (i) and (ii) above have
not been proved in this case. Therefore, we have to construct
new mode functions ug so that they meet the following rather severe
requirements; (iii) v satisfy the Helmholtz equation, (iv) up are
bounded everywhere and satisfy the radiation condition simultane-
ously, (v the space {uy}l is dense in the space of boundary data{g}
on an open boundary. Also, we must prove that (vi) a solution v
of the boundary value problem for an open boundary depends on the
boundary value g continuously. It is the second purpose of this
paper to show that we can realize (iil)~(vi) above, and then,basing
on the results thus obtained, to derive a numerical method which is
useful to solve various practical problems.

Our fundamental equation is (2); ¥1=g, and most of difficulties
mentioned above come from the fact that ¥1+0 does not necessarily
mean 1+0. (Riemann-Lebesgue's theorem.) This fact also implies
that a direct numerical calculation of (2) is not permitted, since
a small change in g, say a truncation error, may cause a big vari-
ation in a solution 1.

As a conclusion of all what was mentioned above, we see that the
full of the mathematical theory described in the following section
is indispensable in both of a theoretical and a numerical analysis
of the boundary value problem for an open boundary.

THEORY . Owing to the limitted pages of paper,only a theory of the
Dirichlet problem for the two-dimensional Helmholtz equation is
summarized. Note that the similar holds also for the three-di-
mensional Helmholtz equation and for the Maxwell equations as well.
Denote an open boundary on a plane R2 by L, points on R2 by x,y,
etc.,the distance between x and y by |x—yL12?nd points of L by x*,
and set w(x,y)=(1/4j)Héz)(klx—yl), where Hy" is the zero-th order
Hankel function of the second kind and k is a wave constant. Let
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u be the component, perpendicular to R2, of an electric field dif-
fracted by L, then it (a)satisfies the Helmholtz equation, (b) as-
sumes a given boundary value g on L, (c¢) satisfies the radiation con-
dition at », and (d) satisfiesthe edge condition at x*. Then,

Theorem 1. A function u satisfying (a)~(d) above is necessari-
ly represented as

(1) u(x)=Sy¥(x,y)T(y)ds, -u,(x), x¢L.

where v_ is given in terms of g, while 1 should satisfy the follow-
ing integral equation of Fredholm of the first kind;

(2) YIS (x,y)T(y)dsy=g(x), X€L.

Conversely, if a solution T of (2) is found and if u is defined
by (1) in terms of 1, then, it satisfies all of (a)~(d) above.
That is, the analysis of diffraction of electric field by L is
equivalent to that of solving for the equation (2).

Theorem 2. ¥1=0 2 T=0.

Theorems 1 and 2 have been proved in [3]. On differentiating
(2), the author converted it to a singular integral equation, and
then solved it. For details, the reader is referred to [3 .

As usual, let C be the space of continuous functions on L,C” be
the space of infinitely many times differentiable functions on L,
and C, be the subspace of C® whose elements are zero in a vicinity
of end points x*. Since ¥(x,y) has a log.singularity at x=y, ¥T1,
which is a function of xeL, is once (tangentially) differentiable
but not differentiable twice or more even if teC*®. That is, the

smoothness of T is not inherited to VYr71. However, as is proved by
Theorem 3 belowtofhe smoothness inherits if teC¥ and we have ¥1eC?¥®
Set Y(x,y)=y (x.,y9) =Y (o) (x,yl)J=0(log|x-y|), and define w(m) and

p(ml successively by U p,(x,y)=/"Yy_1y(x,2)ds,, where the integral is
an indefinite (line) integral along L till yeL. and m7(x,y)=

(d/dsy) fyw[m"ll(x,z)dsz,.where d/ds, is the tangential differenti-
ation along L with respect to xecL. Then, we can prove
(3) wrm%x,y) ={(-1)M/2n}¢(x,y)+0(1), (d/dsx)mw<m¢x,y)=wﬂﬂ{x,9).

Set 8=Wo where cacz , and let cfm)=o(m)(x) and a(m)= a(m)hd be
the m-th (tangential) derivatives of o and § with respect to x,re-

spectively. On integrating by parts, we have
Theorem 3. S(m)=3(m)(x)=(-1)mewrm)(x,y)0(m)(y)dsy-

Since g(m)eC, (3) and Theorem 3 shows that (M ec for m=0,1,2, ——
That is, GeC®, and ¥ maps ceC3 into ceC®. Consequently, if we

set §£={o g=Yc,0eC?}, we have fece, The following is one of the
most important thedrems in our research, but it's proof is too long
to describe here.

Theorem 4. g+0 in C® I G=¥o+0 in C®.
Here, "o»0 in Cg" means tnat ¢ and it's derivatives of all order
tend to zero uniformly on L. "o+0 in C®" is defined similarly.

With help of Theorem 4, togetherwith Hahn-Banach's theorem and
Riesz's theorem in the theory of function spaces, we can show that
Theorem 5. I is a closed subset of C®, and is dense in C®%.
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Therefore, we have §=Cf. This result, togetherwith Theorem 2,
implies that, for any 0eC®, there exists a unique oecﬁ such that

o=Yo. In other words, the equation (2) has the unique solution
1eC3 if geC®. However, this is not the case for a wider class
of g. For example, if g merely belongs to C, then, 1 must be

understood to be a Schwartz's distribution.

Assume D is a bounded, closed domain in R2 which is outside of
L. Suppose x'eD and xeL. Since x'#x, Y(x’',x)eC™ with respect
to x, and hence, by Theorem 5, there exists a function y(x,x'ncg
such that G(x x)=S b(xy)i(y,x')ds, . From this expression,it is
proved that y is the Green functidn concerning an open boundary L,
and that the solution v of the Dirichlet problem for L and for a

boundary value g is represented as v(x')=fLY{y,x')g(y)dsy, which
proves the existence of the solution v in the same time.
Let L, be the space of functions which are square integrable on

L, and sét (r,g)=/,f(x)g(x)dsy and !qw=(9,g) for f,geL).

Then, from the last result, we have
(4) sup|vixt)|gllgl «sup{sply(y.x ) |2as 1172
which proves the continuous dependence of v on g.

Assume {¢,} is a complete orthonormal system of functions in
the space L), and set up=¥¢,. Note that ug(x’), and hence v, (x')
=chuk(x'), where cx are constant, (k=1,2,--, n),satisfy the Helmholtz
equation as functions of x'eD. Furthermore, when x'+xeL, v,(x’')
tends to gnp(x)Sv,(x)=Lc,¥d,(x) which is continuous on L.

Let a function geC and positive constants §,¢6' be given arbitrari-
ly. It is known that there exists a function GeC®such that]d-g]|
<§ holds. By Theorem 5, there exists 6eC® such that §=Yo. ¢ is
expanded in a Fourier series as g=Zcydy, where cp=(0,¢; ), of which
lo-0,[<8’ holds for a pertinent n and op=fcp¢,, (k=1,2,---,n).

As a consequence of what mentioned above, we have a conclusion;
For an arbitrarily given boundary value geC, there correspond 7o,
o and it's Fourier coefficients {c;}. If we set v(x')=Zcpu(x'},
(k=1,2,---,n), vp(x') satisfies the Helmholtz equation at x'¢D and
assumes the boundary value gnp(x)zv,(x)=¥(fc;$,)=Yo, , Oof which we
have [g-g,|sg-cl+|¥(o-an) [<s+]¥is . Therefore, by (4), we have
suplv{x’)-vn(x') li]g—gnl'sup{le‘f(y,x') ]zdsy}l/z +0, (n+0).

As was proved above, v, tends to the true solution V. How-
ever, if n is prescribed and if the best approximation is looked
for, constants ¢y are determined so that [|9-9,| assumes the mink
mum value. That 1s, they are determined so as to satisfy the
following simultaneous linear equations

n
(5) k§§ﬂk'um)6k=(g,um), m=1,2,---,n.

(5) was applied to the case of a plane wave incident to a
straight line segment of a finite length, and obtained a numeri-
cal result which showed a very good coincidence with the exact
solution obtained in terms of the Mathieu functions.
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