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1. Introduction 
The problem of time harmonic radiation of thin-wire antennas involves the solution of the Electric 

Field Integral Equation (EFIE) [1]. To numerically solve the EFIE for its unknown current distribution 
along the antenna, one can employ the method of moments (MoM). In this method, the unknown current 
can be expanded by various basis functions, including the conventional triangular, sinusoidal, and 
piecewise constant functions [1]. The application of appropriate boundary conditions reduces the 
problem to a matrix equation. The matrix, known as the Impedance Matrix (IM), is generally dense. 

The use of wavelet basis functions in the MoM has recently attracted much attention. This is due to 
the fact that they can weaken the mutual coupling of non-overlapping basis, causing the IM off-diagonal 
elements become much smaller than their respective diagonal elements [2]. The omission of relatively 
small elements leads to a sparse IM whose inversion is more desired in terms of computation time and 
memory requirement. It is noted that the inversion of the new approximated IM does not significantly 
affect the accuracy of the final solution [2]-[5]. 

Several wavelet basis functions have been proposed for solving the EFIE by the MoM. These are 
categorized in two groups namely, the Ortho-Normal (ON) bases and Semi-Orthogonal (SO) bases. The 

ON bases are generally used for cases where the approximated function is defined from –∞ to +∞. Haar 
and Battle-Lemarie (BL) bases are examples of this group [2], [3]. The SO bases, on the other hand, are 
designed for finite intervals. Examples of their group are compactly supported linear and cubic spline 
wavelets [4], [5]. Although each of these bases has its own advantages, it may not be appropriate for the 
problem in hand. 

The objective of this paper is to study the merits of various wavelet bases in solving thin-wire EFIE 
by the MoM. The paper follows by a brief description of the problem, introducing a criterion for 
evaluation of the degree of sparsity obtained in the approximated IM without losing a predefined 
accuracy in the final solution. Numerical results are also presented to compare several wavelet bases for 
their merits in solving the problem in hand. 
 
2. Theory 

The schematic of a straight thin-wire antenna in free space is depicted in Fig. 1. The thin-wire 
approximation assumes that the wire radius a is much smaller than the wavelength and the wire length is 
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much greater than a. Applying the zero-tangential electric field boundary condition along the wire leads 
to the EFIE expressed as follows [1]: 
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where K(z-z') and E(z), respectively, denote the kernel and the excitation function of the EFIE. 
In the MoM discretization scheme, one needs first expand the unknown current I(z') in a set of basis 

functions. In order to effectively approximate the unknown current by wavelet bases, the concept of 
multiresolution analysis is used [5]. In the wavelet expansion technique, the unknown current in the 
EFIE can be expanded as a twofold summation of shifted and dilated forms of a properly chosen basis 
function [5]. This arrangement causes the localized bases to concentrate in the vicinity of sharp local 
variations while those with more spatially diffused ones distribute over the smooth part of the current. 
One can therefore expand the unknown current in a set of scaling functions ks ,0

φ  (approximation at the 

lowest resolution 02 s− ), and a multiresolution set of wavelets ψs,k at 02 s− and finer resolution, 
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where the couple subscripts s and k ,respectively, are octave level (scale) and position (shift) parameter, 
and

0 ,s kc  and ds,k represent, respectively, the approximation and detail coefficients [5]. 
To determine the unknown coefficients

0 ,s kc , ds,k, one can test (1) with similar scaling functions and 

wavelets in (2) as weighting functions (i.e., the Galerkin procedure), transforming the EFIE into a set of 
linear equations system as ZJ=V. Z, J, and V denote the IM, unknown current expansion coefficients, 
and excitation vector, respectively. 

Those elements of IM ZN×N which are smaller than specific threshold .max ( , ) /
j i

Z Z i j Nδ δ= ∑  

have been discarded. To set a uniform criterion for all basis functions relative errors εr in current 
distribution (defined by L2 norm as in [4]) and er in input impedance are assumed as the desired 
convergence criteria during the selection of proper individual octave level s0 and threshold value Zδ. 

 
 
 
 
 
 

Fig. 1. The schematic of a center-fed z-directed thin-wire antenna excited by a voltage source. 

 

3. Numerical Results 
To evaluate the performance of various wavelet bases, the input impedance of a center-fed straight 

thin-wire antenna with a=5mm radius has been evaluated using the Magnetic Frill source model [1]. It is 
assumed that the operating frequency ranges from 30 MHz to 600 MHz. Also It is assumed that εr and er 
are, respectively, 1 % and 10 % throughout our investigation. 
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Fig. 2 (a) and (b) respectively show the real and imaginary parts of linear antenna input impedance 
by the classical triangle basis as well as Haar, BL, linear and cubic spline wavelet bases for several 
electric lengths. Table I compares the performance of all aforementioned wavelet bases in terms of 
number of unknowns (indicating the convergence speed), the relative computational time, and the 
average percentage sparsity achieved in the IM. As seen in the Table I, the SO wavelet expansion 
extracts the spatial variation of current more rapidly than the other cases. In particular, the SO linear 
spline appears to be the most appropriate choice for solving the thin-wire EFIE. In fact, there is no need 
to use such smoother bases as cubic spline. Table I also reveals that Haar wavelet accelerates the 
determination of IM elements. This is sought to be due to its simple formulation. In addition, although 
BL gives the highest sparsity in the IM, it produces large number of unknowns which, in turn, increases 
the computation time. Here truncation of infinite support BL scaling functions and wavelets two 
discretization steps away from their centers at each octave level s is proposed. 

In order to search adequate specific threshold value which permits us the maximum allowable 
sparsity Sδ one should set it for IM which has more sensitive solution to data error (has largest condition 
number). To reach average sparsity to Sδ in evaluation responses of frequency domain EFIE for several 
electrical lengths, we recommend to start the analysis from the largest electrical length (frequency) of 
antenna. Because decreasing the electrical length of antenna increase the mutual coupling between 
segments. Consequently, whenever the sparsity is going to exceed Sδ, a little real time reduction in 
threshold value is sufficient to retain the sparsity a little less than Sδ and prevent losing some important 
information during threshold process. 

Fig. 3 shows the sparsity pattern of most ill-conditioned IM for various wavelet basis functions after 
threshold process. By means of Fig. 3, priori locations of non significant matrix elements have been 
estimated and evaluation of small IM elements has been avoided. 

 
4. Conclusions 

It has been shown that compactly supported SO spline wavelets extract spatial variation of the  

        (a)         (b) 
Fig. 2. Input (a) Resistance and (b) Reactance of center-fed straight thin-wire antenna 
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current especially in vicinity of antenna feed with least number of unknown, since they specially 
constructed for bounded interval. Although ON wavelet bases produce discontinuity in end point current, 
they have some advantages over conventional basis choices. In fact simple definition of Haar accelerates 
determination of the IM elements and BL provide high sparsity despite its truncation. 

To reach maximum allowable sparsity of the IM in analysis of wide frequency range, a real time 
threshold process is proposed, which only needs determination of most ill-conditioned IM. 

Fig. 3. Sparsity pattern of diagonalized impedance matrix with largest condition number in solving linear antenna EFIE for 

several electric lengths by (a) Haar, (b) Battle-Lemarie, (c) Linear, and (d) Cubic Spline wavelet bases. 

 

Tabel I: Comparison of the number of unknown (convergence speed), relative computation time, and average sparsity 
for conventional triangle, ON (Haar and BL) and SO (linear and cubic Spline) wavelet bases in precisely 

characterizing current on dipole antenna in free space for (30-600) MHz frequency range. 
Type of Basis  Category s0,su Unknowns Number Computation Time Ratio Av. Sparsity 

Haar 6,6 128 0.21 61.5 % 

Battle-Lemarie  
Orthogonal Wavelet 

6,6 123 3.54 68.7 % 

Conventional Triangle  Orthonormal - 80 1 2.5 % 

Linear Spline 4,4 29 0.53 54.3 % 

Cubic Spline 

Semi-Orthogonal 

Wavelet 5,5 59 3.53 60.3 % 

Acknowledgment 

The authors wish to gratefully thank the financial support provided by the Iranian Telecommunication Research Center (ITRC). 

5. References 

[1]  R. F. Harrington, Field Computation by Moment Methods. New York: McMillan, 1968 
[2] B. Z. Steinberg and Y. Leviatan, “On the use of wavelet expansions in method of moments,” IEEE Trans. Antennas 

Propagat., vol.41, pp 410-419, May 1993 
[3] R. D. Nevels, J. C. Goswami, and H.Tehrani, “Semi-orthogonal versus orthogonal wavelet basis sets for solving integral 

equations,” IEEE Trans. Antennas Propagat., vol.45, pp 1332-1339, September 1997 
[4] J. C. Goswami, A. K. Chan, and C. K. chui, “On solving first-kind integral equations using wavelets on a bounded 

interval,” IEEE Trans. Antennas Propagat., vol.43, pp 614-622, June 1995 
[5] G. Ala, M. L. Di Silvestre, E. Francomano, and A. Tortorici, ”An advanced numerical model in solving thin-wire integral 

equations by using semi-orthogonal compactly supported spline wavelets,” IEEE Trans. Antennas Propagat., vol.45, pp. 
218-227, May 2003 

(a)

(d)(c)

(b)

- 184 -




