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1 Introduction

It is required to develop an efficient analysis method to investigate the characteristics of the
large-scale periodic structures such as the large-scale array antennas and metameterials having
a periodic structure of small resonant particles and interesting properties such as the negative
permittivity and the negative magnetic permeability.

The method of moment (MoM) is one of the efficient methods for the EM analysis of the
periodic structure. When the array antenna or the periodic structure is composed of N elements
and each element is divided into M segments for sub domain MoM analysis, NT × NT matrix
equation has to be solved to obtain the unknown current vector, where NT = M×N . When the
direct method such as the Gauss-Jordan method is employed to solve the matrix equation, the
CPU time is proportional to N3

T . In the case of a large-scale periodic structure, N becomes so
large that the CPU time for solving the matrix equation is much longer than that for evaluating
the impedance matrix, which is proportional to N2

T , and becomes the dominant part of the total
CPU time in the MoM analysis [1].

Instead of direct methods, iterative methods such as the Gauss-Seidel method and the Con-
jugate Gradient (CG) method have been applied to solve the linear matrix equations. The
number of arithmetic operations of these iterative methods is usually proportional to N2

T for
each iteration step. However, it was pointed out that the required number of the iteration step
of the CG method depends on the analysis model and the size of segments of the basis functions,
and is usually proportional to NT , which means that the total number of arithmetic operation is
proportional to N3

T , the same order to the direct method [2, 3]. On the other hand, the criterion
of the Gauss-Seidel method is too strict to be applied directly in the MoM analysis [4], [5], but
this problem has been solved by using the sub matrix as the iteration unit in stead of the matrix
element [5].

In this paper, an iterative algorithm based on the successive overrelaxation (SOR) technique
is introduced to solve the matrix equation in the MoM analysis of the periodic structures, whose
CPU time is approximately proportional to N2

T and is even faster than the Gauss-Seidel method.
The convergence criterion of the iterative algorithm is investigated and the effectiveness of the
method is shown by numerical examples.

2 Iterative Method

The impedance matrix [Z] in the MoM is divided into [S] and [T ] so that the matrix equation
of [Z][I] = [V ] becomes

[S][I] = −[T ][I] + [V ], (1)

where [S] consists of the lower-left triangular part including the diagonal elements of [Z] ,
and [T ] consists of the upper-right triangular part excluding the diagonal elements. In the
present iterative algorithm, the periodic structure is divided into a number of groups and each
group consists of several neighboring periodic elements, so that the impedance matrix can be
decomposed into a number of sub matrices corresponding to the group of the elements. The
diagonal sub matrices [Z]ii in the impedance matrix describe the self and mutual impedance
between the divided unknown segments in the group i, and the off-diagonal sub matrices [Z]ij
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include the mutual impedance between two divided unknown segments of different groups i and
j. The sub matrices are the basic iteration units rather than the matrix element in the ordinary
SOR iteration method. When the total array elements are divided into N/K groups completely,
where N is the total number of elements and K is the number of elements in each group, the
iterating procedure is expressed by:
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, i = 1, 2, · · · , N/K; l = 0, 1, · · · , L. (3)

where [Ī]i is a MK current vector of the group i and [Īt]i is a MK vector for storing [Ī]i
temporarily. [I](0)

i is the initial value of the current vector of group i evaluated neglecting the
mutual coupling between the groups and calculated by
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where [V inc]i is the incident voltage vector of group i. ω is the overrelaxation parameter, which
should be properly determined to accelerate the convergence. The SOR method becomes the
Gauss-Seidel method when ω=1. The iteration continues until the criterion

|I(L)
k − I

(L−1)
k |/|I(L−1)

k | ≤ ε (5)

is satisfied for a small value of ε, and for all the dipole segments (k = 1, 2, · · · ,MN) at the final
Lth step, where Ik is the current on the dipole segment K.

3 Numerical Results

The piece-wise sinusoidal (PWS) MoM [6] is applied to investigate the convergence character-
istics of the iteration method. Fig. 1 shows analysis model which is an N -element 1-D array
anntena of dipole elements with length of 2h, radius of a, and array spacing of d. Each dipole
element is divided into M overlapping dipole segments for the subdomain MoM analysis. In the
following numerical analysis, h=0.25λ, a=2.5×10−3λ, and M=9.
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Figure 1: Analysis model: a linear dipole array antenna.

The optimized value of ω is investigated to show the required iteration steps L when ω varies
and ε in the convergence criterion shown in Equation (5) is 1× 10−8. Fig. 2 shows the number
of required iteration steps when array spacing d is changed. It is found that the iteration steps
for the case of ω=0.8 is less than that for ω=0.2 when d is larger than about 0.5λ. However, the
number of the required iteration steps increases so rapidly when d decreases that more iteration
steps are required for ω=0.8 when d is smaller than 0.3λ. It indictes that a large ω can accelerate
the iteration when the mutual coupling between the neighboring groups is small, but could make
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Figure 2: Required iteration steps versus
array spacing.
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Figure 3: Required iteration steps versus
number of array elements.

the iteration unstable and degrade the convergence when the mutual coupling is strong or the
array has a large number of elements. Since it has been shown that the grouping technique can
reduce the mutual coupling between the groups and make the convergence stable [5], selecting
a relatively large ω together with the grouping technique could accelerate the convergence.

The number of iteration steps versus the total number of the dipole array elements is shown
in Fig. 3. The number of iteration steps becomes almost independent of the element number
N when N is large. The total CPU time T for solving the matrix of MoM can be estimated
by the expression T = α(KM)3 + βL(MN/K)2 where the first term is for evaluating [Z̄]−1

ii and
the second term is for each iteration step. α and β are constants depending on the computer
performance. If the number of iteration steps L is independent of the number of the elements
N , the computational cost would be approximately proportional to N2 when N is as large that
the value of second term is much greater than the value of the first term.

The residual norm of the evaluated current distribution at the final iteration step L is
evaluated for various ω and shown in Fig. 4, where the value of L is the same as shown in Fig.
2. The residual norm is smaller than 2× 10−7 for all cases, which indicates that good accuracy
of the iteration is obtained.

In order to demonstrate that the proposed method is effective to save the CPU time for
solving the matrix equation in MoM with a large number of unkowns, the CPU time versus N
is shown in Fig. 5. In the calculation, the total unknown is from 90 to 9000 since each element
is divided into 9 dipole segments. The value of the CPU time was measured on PC with CPU
of Pentium-IV 2GHz. The curve of the Gauss-Jordan method is also plotted in the same figure
for comparison. In Fig. 5, ω=0.8 is the most effective parameter to save the CPU time when
N is in the range of 20 to 1000, while ω=1.2 is the most time consuming value compared with
the other values of ω. The results show that the CPU time is proportional to N3 by using the
Gauss-Jordan method, while it is almost proportional to N2 by using the present method. It
is also found that the CPU time in the case of ω=0.8 is about half of the Gauss-Seidel method
(ω=1). The cost saving effect of the iteration method is significant for a problem with large
number of unknowns.
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Figure 4: Residual norm of evaluated cur-
rent versus array element number.
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Figure 5: CPU time versus array element
number.

4 Conclusions

A SOR iterative algorithm has been proposed to solve the matrix equation of the MoM anal-
ysis for the periodic structures. The convergence criterion of the iterative algorithm has been
investigated numerically. The CPU time has been shown to be approximately proportional to
N2 when N is large enough, which is greatly reduced compared with a direct method such as
the Gauss-Jordan method. The method is faster the Gauss-Seidel by selecting a proper ω. The
optimum value of ω depends on the geometry of the array elements, array spacing, scan angle
and so on.
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