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1. Introduction
Analysis of wave propagation behavior in periodic structures due to its wide range of applications is 
faced in various systems and design processes appearing in electromagnetics, optics, acoustics, and 
telecommunications [1]. Consequently, it is essential to have an exact, efficient, and stable way to find 
reflection and transmission coefficients, diffraction efficiencies and field profiles inside and outside of 
the grating. Different approaches have been reported for analysis of gratings in literature, rigorous 
coupled wave [1], coupled mode [2], two wave methods [3], Raman-Nat [4], etc. just to name a few. 
Of many methods for analysis of volume gratings, rigorous coupled wave analysis, or RCWA, is the 
most precise, the most general, and the most widely used method. It has been successfully applied to 
the analysis of two-dimensional and three-dimensional isotropic and anisotropic structures [5]-[9], as 
well as multiple grating structures [10]-[11]. However, it should be noticed that RCWA steps could be 
applied without numerical difficulty only when evanescent orders corresponding to real eigenvalues 
do not appear in the solution of Maxwell’s equations. In general, if some evanescent orders are present, 
in imposing boundary conditions some extremely large coefficients are involved which are the cause 
of overflow in calculations. But evanescent orders cannot always be discarded especially in such cases 
as multiple grating structures. These methods are also vulnerable to numerical instability when the 
ratio of thickness over grating periodicity is large, or large number of spatial harmonics is retained. In 
the proposed method, the field expressions inside the grating are expanded in terms of orthogonal 
polynomials such as Legendre polynomials where the solution is examined in a Hilbert space spanned 
by polynomials. The method yields numerically stable results. This paper is arranged as follows: 
Polynomial expansion formulation of electromagnetic fields for the general case slanted gratings is 
given in Section 2. Section 3 involves a comparison of the results with the RCWA eigenvector 
expansion results. Finally, Section 4 deals with the conclusion.

2. Polynomial Expansion Analysis of general case Slanted Gratings
In this section, the field expressions inside grating are expanded in terms of orthogonal polynomials 
e.g. Legendre Polynomials [12]-[13]. Starting with Maxwell equations, Helmholtz equation is derived 
and the Floquet expansion in the grating direction is modified in terms of orthogonal Legendre 
polynomials. Then this form of the solution is substituted in Helmholtz equation and the boundary 
conditions are applied to find the unknown coefficients. It should be noticed that expansion of the field 
expressions in an orthogonal complete space of polynomials is a nonharmonic expansion [13], i.e. it 
isn’t a linear combination of intrinsic eigenvectors. Nonetheless, it has many advantages over 
eigenvector expansion and other previously mentioned methods. First, the equations become algebraic 
so that they can be manipulated easier. Second, this approach works properly in some special cases 
where other methods may fail. There is not any numerical instability as the matrices involved are not 
very sparse and also there is no need to keep many digits because the large and the small numbers 
involved are not highly at either extreme. Also solving in polynomial Hilbert space, can be interpreted 
as the projection of the other solutions e.g. eigenvector expansions on the new polynomial bases. This 
means that each polynomial contains the projection of all of electromagnetic eigenmodes of the system 
in it
A general form of a slanted grating is shown in Fig.1. Here, Permittivity is assumed to be a periodic 
function of x’:
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where  
GGK Λ= π2  and GΛ  is the grating period. Inside the grating, the Helmholtz equation can be 

easily derived for TE incidence as follows [14]
0)','()'()','( 22 =+∇ zxExkzxE yy ε , (2)

The relation between (x,z) coordinates and (x’,z’) is simply a clockwise rotation of coordinates.
Following the Floquet solution in x’ direction, the general form of the solution may be obtained as [1] 
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Substituting this form of solution into wave equation and doing appropriate manipulations we have [1]
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=m , and λ is the wavelength of light at free space.

To solve the above equation we assume the answer is expanded in terms of Legendre Polynomials as 
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Here )(ξmP ’s are normalized Legendre Polynomials and i
mq  are the expansion coefficients to be 

determined later. It should be noticed that the space of Legendre polynomials is complete [13] 
and )(zSi ’s can be expanded in terms of them. However, computationally one has to truncate the 
previous expansion and retain only first Mi terms of expansion and this leads to truncation error. 
Minimizing this truncation error leads to [13]: 
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Equation (6) results in a set of Mi –1 equations with Mi +1 unknowns. Therefore, one needs two further 
equations obtained by applying boundary conditions at z = 0 and z = d [14]. Appropriate boundary 
conditions can be applied by using field expressions in regions I and III given in (7), and (8), 
respectively [1].
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Here Ri and Ti are the reflection and the transmission coefficients of each order.
Applying continuity conditions of tangential electromagnetic fields by using equations (3),(7-8), 
eliminating  Ri and Ti coefficients, and doing further algebraic manipulations results in:
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where    )cos()cos(2 φθ Gi iKKC −= . Now equations (6), (9) and (10) forms a set of Mi +1 equations 

through which s'qi
m  can be obtained. Consequently, Ri, Ti, and corresponding diffraction efficiencies 

would be determined from boundary conditions where
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3. Numerical Results                                                  
As a first numerical example, a reflection grating is analyzed where the grating slant angle is °= 150φ , 

25.20 === εεε IIII , the grating modulation is ε1/ε0=0.33, and the angle of incidence satisfies first 
Bragg condition at °= 20'θ . Fig. 2 shows variations of different diffraction efficiencies versus 
normalized thickness (d / Λ G) obtained by using RCWA (solid line) and polynomial expansion method 
proposed in this paper (dashed line) where five space harmonics are retained. Our results show an 
excellent consistency with those obtained by Gaylord et. al. [1]. However, it should be noticed that 
RCWA eigenvector expansion method fails when the thickness is increased beyond GΛ5 where 
numerical instability occurs. As another example, a transmission grating with permittivities of 

25.20 === εεε IIII , grating modulation of ε1/ε0=0.12, slant angle of °= 120φ , and the angle of 
incidence satisfies first Bragg condition at °= 42'θ , is considered. Similarly Fig. 3 shows variations of 
different diffraction efficiencies versus normalized thickness (d / ΛG) obtained by using RCWA (solid 
line) and polynomial expansion method proposed in this paper (dashed line). Again, our results show 
good agreement with those reported by Gaylord et. al. in [1]. However, it should be noticed that 
conventional RCWA analysis fails to handle more than five spatial orders (i > 4) while polynomial 
expansion method works good enough to work out this problem.

Conclusion:
In this paper, a polynomial expansion of electromagnetic fields for grating diffraction analysis is 
reported and the formulation of the general case of slanted grating is derived. This new method is 
based on Legendre polynomial expansion rather than conventional modal analysis. To verify the 
proposed method, the results of our analysis are compared with results reported previously. Besides, it 
is shown that our proposed polynomial expansion method yields more reliable and stable results 
especially when conventional RCWA method fails to get stable numerical results for thick gratings, 
and increased numbers of space harmonics. The physical intuition behind the accuracy of the proposed 
method can be described by the fact that, even though in practice the expansion of the electromagnetic 
field in Hilbert space spanned by Legendre polynomials is truncated, each of the polynomials that 
remains in the calculation contains the projection of all of electromagnetic eigenmodes of the system 
in it. Thus no modal information on the system is lost in the truncation process.
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Fig. 1. Slanted grating
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Fig.2. Diffraction efficiency computed by polynomial 
expansion (dashed line) and RCWA method (solid 
line) As the grating thickness increases, 
eigenvector analysis (solid lines) fails due to 
numerical instability, while polynomial expansion 
(dashed lines) works well.
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Fig. 3. Diffraction efficiency computed by polynomial 
expansion (dashed line) and RCWA method (solid 
line). While the proposed polynomial expansion 
works well with seven space harmonics (i=7), the 
conventional RCWA analysis fails to handle only 
five orders (i=5).
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