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1. lntroduc i ion 

The p r oblem of the maximum likelihood ( ML ) est imat io n of st r uctu red 
covariance has recent ly been s tudied in various aspects [1 - 3] . F o r antenna 
array processing supplem ents, s tructured I\IIL estimate.; of co m plex Toeplitz 
covariance matrices have been obtained in (4 ,5] . In [6] the ML e :"! timatei3 
o f signal and n oise powe r s for the low-rank structured covaria nce mat.rix 
model were derived. In this communication the ML estimates o f unknown 
3ignal and n oise powers for a full-rank structu r ed covarian ce matrix model 
are p resented. For derivation o f ou r IVIL estimator we employed the low 
s ignal/noise ratio (SN R ) assumption . The estimation er r o r s are compared 
with t h e Cramer-Rao lower bound . 

2. ML estimation of signa.l and noise powers 

A ssume, that 11 x n noise covariance matrix [ and n ~ fl s ignal cov ariance 
matrix Q are known a priOri and , so, t h e exact covarianc e ma t rix of array 
outputs is given by 

R = p,J+PsQ, 

where I is the identity matrix , Q is the complex matrix of arbitrary st ruc 
ture. P. and Po: are unknown s ignal and noise variances. respectively. The 
p r oblem is to derive t h e ML est imat es of the real paramet';-rs p , a nd pr from 
the 3am ple covariance matrix R gi ven by 

~ 

R = ! L:X(I)XH (l ) 
,=1 

Here m i5 the total number o f statistically independent array data s nap
s h ots, X (I) is jointly Gau ss ian n " I co mplex array data vector with the fol 
lowing properties: E {X (I)} = 0, E {X( I)XR (i)} -= 6,,,R, where 6,1 is the Kro necker 
delta , H denote s the Hermitian transpose, E denotes the expectation oper
ator. The ML function can be exp r essed as [41: 

(I) 

where Tr denotes th e trace of matrix. The ML equati ons can generally be 
written in the following form : 

8L 
-- =0; 
8p, 

8L 
- = 0 
8p, 

(2) 

for PIt = PIt ; p. = PII where PIt and P. are the lVlL estimates of the parameters P ... , 
P •. We obtain the so l ution of (2) under the low SNR assumption given by 
p,UQU oCp." P. < PIt· One ca n write the expansion : 

w ' = ~([ - E!.Q + (E!.) , Q' _ ... ) 
p~ p ~ p" 

(3) 

which converges when the low SNR assumpt ion IS fulfilled . Employing ( 3 ), 
we find that 
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( 4) 

Rewriting det.R as detR=p;det(~ITQ) , we find also, that 

~(Io d~t R) = ~ _ PI! L~-l det(QI; + tI) 
Bp. g p. p~ det(Q + tI) 

(5 ) 

.!.... _ I E~_I det(QI: + tl) 
8p (logd"RI_ d (Q E..I) • 

• p. et +,. 
where Qi is th~ (n - I) x (n - 1) matrix which is obtained from the ma.trix 
Q after destroying its .l:th row a.nd kth column. After the straightforwar d 
calcul ation s we represent (5) in the following form: 

(6) 

88 (log del. R) = -.!....(n _ !!..TrQ + (tc) 2 Tr(Q') _ ... ) , 
'P, p" PII P .. 

Note that in general ML equations (2) are nonlinear, but they can be l in
ea, l."ized with respect to the small parameter ;:: . Using equations (1), (4), 
and (6) and the above- ment ioned l inearization procedure we rewrite the 
1\.1L equations (2) as 

( 7) 

Solut ion of (7) represents the ML estimates of P. and Pn: 

. n T,(QIl) - T,Q T, 1I 
p, ~ n Tr(Q2) - (TrQ F 

( 8) 

. T, R T,(Q ' ) - bQ T,(QR) 
p" " n T,(Q') - (T,Ql' • 

Equations (8 ) a.re a.pproximate because of the li n ea..rization procedure. The 
disti n ct io n between the !\oIL estimator (8) and the exact so luti on o f equa
tions (2) is de ri ved in the next section . 
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3. Statistica.l performance 

It is easy to ve r ify that estimates (8) are nonbiased because E{ p. } =P • • 
E {p •. ) =P ... Calculation of the cavariances of PI'P .. yields: 

I 
covl.P .. P.) = -

m ( p' 
" n 

n' Tr(Q') - 2n TrQ Tr(Q')+ (TrQl' 
(n Tr(Q') _ (TrQ)'l' T 

'2 n Tr(Qt) - 2rl TrQ Tr(QJ) + (TrQ)'2 Tr (Q2)) 
"p, (n T r(Q') - (TrQ),)' , 

(TrQ)' Tr(Q') - T rQ (T, (Q'))' 
(n Tr(Q') (TrQ)'l' + 

, (T,(Q'»)' - 2 T,Q T,(Q'l T,(Q') + (T,Q)' T'(Q')) 
+p, (n Tr(Q'l - (T'Q)')' • 

n Tr(Q2) _ (TrQ)2 + 2p"psn 
(Tr(Q'))' - T, Q T r(Q') 

(n T,(Q') (TrQ)')' + 

, n(T,(Q') T,(Q') - T,Q Tr(Q')) + (T'Q)' T,(Q') - T'Q(T'(Q'))') 
+p, (n T,(Q') (T' Q)')' . 

(9 ) 

The estimation losses of (8) as compared to the exact ML solution can 
be described by means of the following pa.rameter: 

q=detJdetC , (10) 

where J is the 2 X 2 Fis h er information matrix a.nd C is the 2 )1t 2 covar iance 
matrix of estimates P, and p,. . This parameter char acterizes the dist in c t ion 
between the estimation er r ors of the proposed estimator and the Crame r
Rao lower bound. It is straightforward to show with respect of (9) that 
(10) can be expressed as 

From equation (ll ) it fo ll ows that for low SNR the parameter q is close to 
unity and , so, the covariances of !\oIL estimates (8) are comparable to the 
Cramer-Rao lower bound. The second term in (11) gives the SNR threshold 
for the proposed ML est imator . 
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4. EX:llITlpl e 

Conside r a. simple example where the signal cova.riance matrix ha3 a diade 
structure. which corresponds to the case of a localized na.rrowband s ignal 
source. The matrix: Q in this case can be expressed as Q = SSH , where S is 
the n x l signal direction vecto r . Assuming, tha.t the norm o f thE: matrix Q is 
SHS:;:: n we obtain from equat ions (8 ) that the ML estimates for this special 
c ase can be represented as 

n 
Pro :;:: 

TrR - sB/is 
n{u - I) 

( 1 2 ) 

Equations (12 ) coincide with the exact ML solution s inc e q= 1. So , the c o 
variances of the ML estimator coincide with the Cramer-Rao lower bound . 
Using (12) or 19) , we find that the se c o v ariances are g i ve n by 

'" .) I ( p; 2P,P, ' ) COVIY. ,P. =;;; n(n 1) -r- -;;- + P. 

'" .) 1 P; cov\},n ,p", = ---
mil - 1 

'" .) I P; cov\J'" P ... = - - ( 1) mnn-

From the equations ( tl ) it is seen tha.t in the case of a localized narrowband 
signal source the signal and noise powers can be optimally e s t imated using 
only two simple operations: the steering operation and the measurement 
of the input power of the array. 

5. Conclusion 

I n t hi s pape r we present the nove l ML est.imator of the signal and noise 
powers for structured covariance . The proposed estimator is based on the 
low SNR assumption where the ML equations can be linearized with respect 
to this small parameter. It is shown that for low SNR the e s timation errors 
are comparable to the Cramer-Rao lower bound. 
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