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Although adaptive array beamformers have been successfully used for the 
purpose of beamforming, their performance is very sensitive to the mismatch between 
the actual weights and the ideal weights. The mismatch may be due to the 
quantization of weight values. Nitzberg [1J and Godara [2J have analyzed the effect 01 
weight errors on array performance. They show that a fully adaptive array beamformer 
is very sensitive tei the -randonfweight errors. To reduce the array sensitivity, Jablon [3J 
and Zahm (4) have injected an artificial noise to increase the received noise level 
when computing the adaptive weights. This prevents the beamformer from nulling out 
the desired signal. while the array's ability of suppressing interference is also reduced. 

This paper investigates the effect of random errors induced by the adaptive 
weights on the performance of adaptive array beamformers. Analytical formulas 
representing the array output SINR (signal-to-interference plus noise power ratio) in 
the presence of random weight errors are derived for partially adaptive and fully 
adaptive beamformers, respectively. It is shown that the part ially adaptive beamformer 
is less sensitive to random weight errors when compared to the lu lly adaptive 
beamformer with the same size. Computer simulations confirm the theoretical work. 

Ii. FORMULATION OF ADAPTIVE ARRAY SEAMFORMING 

Consider an adaptive array beamformer based on the GSC structure with N 
elements as shown in Fig.1. Let X(t) be the received signal data vector and Wq be the 

quiescent weight vector. Then Wq is given as Wq = C(CHC)·'f, where C denotes the 

constraint matrix with size NxL and f is an Nx1 response vector satisfying CHWq = f, H 
is the Hermitian operation. The overall array weight vector W = Wq - SWp. The optimal 

adaptive weight vector Wp is given as Wp = Ru-1p which is found by minimizing the 

array output power = E[ly(t)l 2J = E[lWqHX(t)_WpHU(t)l2]. where Ru = SHRxS is the 

correlation matrix of the output U(t) = SHX(t) of the signal blocking matrix S, P = 
SHRxWq, and Rx = E(X(t)XH(t)} is correlation matrix of the received signal vector X(t) = 

S(t) + S;(t) + N(t), where S(t) is the desired signal vector with power P" S;(t) is the 
interference signal vector with correlation matrix Ri. and N{t) is the white noise vector 

with correlation matrix 0'21. Then the array output power is given as 

Sf = E[lW~X(t)12J - pHRu'p. (1) 
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Next. a partially adaptive beamformer uses a part of U(t) to find the optimal adaptive 
weights. Suppose that M (M<N-L) signals of the signal vector U(t ) are used. Let the 
matrix T with size (N-L)xM spans the signal subspace associated with the M signals 
and G with size (N-L)x(N-L-M) spans the unused signal subspace. Hence. rank of [TJG] 
= (N-L). Then the optimal weight vector Wp is obtained by solving the following 
minimization problem 

Minimize E[Jy(t)J2] subject to GHWp = 0 . (2) 
Its solution is given as 

Wp= Wf - R,,-lG(GHR,,-lG)-lGHWf . (3) 

Subsittuting (3) into y(t) = d(t) - WfHU (t) and computing the power of y(t) yields 

~p = ~f + pHR~l G (GHR~l Grl GHR~l p . (4) 

Comparing (1) and (4). we note that ~p > ~I . 

III. EFFECT OF RANDOM WEIGHT ERRQRS 

Here. we ' assume that ·the computed adaptive weights are different from the 
optimal adaptive weights as follows 

(5) 
where r w denotes the weight ~rror vector and its elements Y'. i = 1. 2 ... .. N-L. are 

statistically independent random variables with mean zero and variance cra. The - -
overall array weight vector is given as W = Wq - BWp = W - Br w. Assuming SIt). Silt). 

and N(t) are mutually uncorrelated. Then the array output power is given as 
..... .......H ....... .... .... "" 
~ = W R,W = ~, + ~i + ~n 

• (6) 
~ H ~ - H-

where ~s = W E(S(t)S(t) )W = Ps is the output signal power. ~, is the output 
interference power given as 
~ -H H - H H H H H . • .H 
(,i=W E(Si(t)Si(t) )W=(W-Br w) Ri(W-Br .)=W RiW+r.B RiBr . -r .BR,W-vv· H iBr. (7) 

~n is the outpul noise power given as 

~n=cr2(WHw+r~BHBr .-wHBr w-r~BHw) . (8) 

Taking the expectations for (,i and (,n. we obtain 
.... ",,' H H H H 

E( (,i) = ~i = W RiW+E( r wB R,Br w)) • (9) 

and E{ ~n) = ~n = cr2(wHw+E{ r~BHBr~ )) • (10) 

respectively. Since the term wHRiW represents the output interference power. it can be 

neglected when the random weight erlors are not present. The output SINR is then 
approximately given as 
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(11 ) 

where p,/cr 2wHw is the output SINR of the adaptive array without random weight 
errors. 'Tr' denotes the trace operation. The inverse term in (11) is called the weight 
degrading factor (WDF). Next, we evaluate the sensitivity of adaptive array 
beamformers to the random weight error. The Wrlw is given as 

wJ1w = fH(CHC)-1 f + WtBHBWI (12) 
for fully adaptive beamformers, while it is approximately given as 

WHW = fH(CHC)·lf + WfHBHBWf + pHf\, .IG(GHf\,.1 G)'I GHRu'l P (13) 

for partially adaplive beamformers. Obviously, the value of (13) is greater than that of 
(12). Therefore , we note from (1 1) that the WDF of a partilly adaptive beamformer is 
greater than that of a fully adaptive beamforrrier, i.e., a partially adaptive beamformer is 
less sensitive to the random weight error. . 

IV. SENSITIVITY OF ELEMENT-SPACE PARTIALLY ADAPTIVE BEAM FORMERS 

In this se.ction, we consider the case of element-space partially adaptive 
beamformers whiCh have been widely considered in the literature. Since the signal 
blocking matrix B must be orthogonal to the constraint matrix C, one may choose the 
eigenvectors corresponding to zero eigenvalues of C(CHC)' I CH as the columns of B. 
In the case of unit gain constraint, B can be of the form 

H [ 1 -1 .0... 0 .. 0 1 
B = 0 .. 0 1 -1 0 .. 0 

0 .. 0 0 .. 0 1 -1 . (14) 
Assume that there are J interferers. The covarinace matrix Ai can be written as 

J 
Ri = L P IS IS~ , 

;., (15) 
where p; and Si are the power and phase vector of the ith interferer, respectively. 
From (1 4) and (15), we obtain 

(16) 

where a ; = 11 - ei·1
2 

and ~ ; is the phase associated with the ith interferer. S;' denotes 

the phase vector associated with the ith interferer with size less than that of S; by one. 
Furthermore, we have 

Tr(BHBE{ r wr~)) = 2Mcr~ , 
where M is the degrees of freedom for adaptation. From (16), we have 

H J 
Tr(BHR;BE{ r wr w)) = Mcr~I p;a;. 

j .. 1 

Substituting (17) and (18) into the WDF of (1 1) yields 
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(18) 



2+L Piaj 

[ J] 
WDF = 1 +M"~( :;W ) ., 

( 19) 
In the case of arrays with full adaptivity, M = (N-l) in (19) . Moreover, (19) reveals that 
the WDF is independent of the elements of U(t) chosen for adaptation . 

V. COMPUTER SIMULATIONS 

An example of element-space partially adaptive beamformers is presented. 
Consider an equally spaced linear array with 10 elements and half wave length for 
interelement spacing. A desired signal is at broadside with SNR=10 dB and an 
incoherent interferer is incident from 300 off broadside with INR=20 dB. Figure 2 shows 

the WDF in dB versus the variance cra. of the random weight error. This comfirms that 
the fully adaptive array is very sensitive to random weight error and partially adaptive 
arrays are less sensitive than the fully adaptive array with the same array size . 
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Fig. 2 The WDF versus The Weight Error Variance 
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