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The problem that is treated here is
the reflection at the interface between
vacuum and anisotropic one component
(electron) plasma. The anisotropy is
due to an externally applied static
magnetic field applied perpendicularly
to the interface. The electromsgnetic
wave impinges normally upon the inter-
face between the vacuum and plasma.
The plasma is considered to be homo-
geneous and warm., The procedure that
is applied in this paper is somewhat
similer to Felderhof's method!. But,
because of the anisotropy present, all
frequencies in the plasma are Doppler
shifted by the electron cyclotron fre-
quency W, .

This Doppler shift of the frequency
destroys the symmetry which mekes the
problem more difficult to handle. For
this case Felderhof's method has to be
modified.

In order to obtain the first order
field quantities, i.e., the first order
electric and magnetic fields and the
velocity distribution function, & more
systematic procedure is used:

First, the dyadic Green's function
is derived in the Fourier transformed
space with respect to the position and
time; viz. in the k-w space (k: wave
number, w: angular frequency). Then
using the wave number k as an eigen-
value the complete set of eigenvectors
for the guided wave representation is
obtained in terms of the spectral rep-
resentation of the Green's function?.
This spectral representation gives the
normal modes or the Van Kampen-Case
Modes?’“?%?® for this problem. Sec-
ondly, all the first order field quan-
tities are obtained in terms of the
complete set of eigenvectors by using
superposition, once the expansion co-
efficients are determined. In deriving
the superposition coefficients the spec-
wlum assumption is used, i.e., all

particles at the boundary are reflected
back into the plasma with the same mag-
nitude of velocity as they come to the
boundary, or equally one can state that
the boundary at the interface between
vacuum and plasma is abrupt. In eddi-
tion the outgoing character of the waves
and causality conditions are taken into
account to get a unique solution.

The field quantities in the plasma
(2>0) are given as:
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Speed of light in the vacuum
H%(o)=nx(o)1;ny(o): Hx(O) and Hy(o) are

the x and y components of mag-
netic field at the interface
between vacuum and Vlasov
plasma. £ and r indicate the
left and right hand polarized
fields respectively.
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F(u'): Background electron distribu-
tion function in z direction
of velocity.

(Maxwellian distribution is

assumed),
o
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I{u)=uF(u)-G(u):
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The integral with respect to k for Egs.

(1) and (2) must be interpreted as
follows:

Fig. 1 1Integral Path in the
Complex k-Plane

The reflection coefficients for the
left and right hand polarized field are
given as: ’
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Frcm Eq. (4), one can easily see the
different surface impedance for the
left and right hand polarized fields.
Therefore the reflection coefficients
for two different polarized fields are
different.

Suppose a linearly polarized wave is
incident upon the interface and if the
frequency of the incident wave is in the
range as specified in the following, the
corresponding polarizations of the re-
flected and transmitted fields are given
below (assuming wp > wc):

w W
c + Cy2 2
i. w> = AI(-—a )+ wp

The reflected wave is generally ellipti-
cally polarized. Both polarized waves
can be transmitted with different phase
velocities.
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The reflected wave is an elliptically
polarized wave. The transmitted wave
is a left handed polarization wave.

(.llc mc 2. 2
iif. —2—+ (2—) 'Hdp> w > Uc

The reflected waveisa linearly polarized
wave. No transmitted wave.
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The reflected vave is an elliptically

polarized wave. The transmitted wave

is a right handed polarized wave.
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