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Introduction

One of the important problems in vehicular communication is the atte—
nuation of field intensity in tunnels which are surrounded by dissipative
medium such as earth, rocks and concretes. It is too difficult to analyse
the exact propagation characteristics of electromagnetic waves in tunnels

" considering all boundary conditions. The study reported here which models
a tunnel as a hollow dielectric waveguide with circular cross section
extends the earlier work by Glaser [1]. Attenuation constants of normal
modes are investigated by numerical computation and compared with experi-
mental data.

Attenuation constants

Geometry of a modified tunnel is shown in Fig.l. At frequencies in
the range of 200-4000 MHz, earth, rocks and concretes act as lossy
dielectrics with relative dielectric constants in the range 5-10, conduct-
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satisfy the following deterministic equation as given by Stratton [2].

[ Ji(u)  HA(v) _ kziJn’(U)_ kzeHﬁ[V)]= nzhz(_l__l_)z )
uJn(u) vHp (V) uJ, (u) vHn (V) u? v2

;where u=ma v=/ké_-h2 a a ; radius

k$=w2eyuq k2=w2epy-july 6 w ; angular frequency
h=g-ja €; permittivity of free space
B ; phase constant lp; permeability of free space

o ; attenuation constant o ; conductivity

b
er=e/gp ; relative dielectric
constant
Jn(u) ; Bessel Function of order n with complex argument
H,(v) ; Hankel Function of the second kind of order n with
complex argument
; differentiation with respect to the indicated argument
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Equation (1) can be written simply in the form
F=0 (2)

By numerical computation based on Newton’s method, the exact propagation
constants of normal modes can be obtained. Attenuation constants are shown
in Fig.2-7. where parameters are

a=4 m €r=2,5,10 0=10"1 ,102 5/m

The attenuation constants of these modes decrease as frequency increases.
This phenomena can be understood as the result of refraction loss rather
than ohmic loss. The minimum-loss mode is TE. for large relative dielect-
ric constant, EH,, for small relative dielectric constant. However when kja
is small, HE, mode has the minimum loss, as shown later in Fig.9.

Here, EH and HE modes are determined by the trace of roots of eq(2) as
a function of conductivities. These modes can also be determined by
examining the ratio Ez/nHz for each mode.

| e @

That is, Q, by eq(3), greater than 1 for EH mode, while Q@ is less than 1
for HE mode. Fig.8 shows the value of Q for conductivities. It is hard to
discriminate between EH and HE mode in dissipative medium as tunnels.
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Finally, we measured attenuation constants of some modes to comfirm
these theoritical results, as shown in Fig.9. Experimental results are in
good agreements with theoritical ones. A method to decrease the attenua-

tion of TEgp mode has been proposed using circular metallic rings around the
wall [3].
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Conclusion

Attenuation of normal modes obtained through numerical computation
shows that the minimum-loss mode in ideal hollow dielectric waveguides is
TEgimode, and that EHj mode has the second minimum loss. These theoritical
results show fine agreements with experimental ones. But TEpmode can
exist only in the waveguides with circular cross section. Therefore in
actual tunnels EH); mode becomes the dominant. Additionally, it is proved
experimentally that EHllmode is excited quite easily in these structures.
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