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1. Introduction

Since complicated optical waveguide circuits will be used in the future,
it is necessary to construct computer—aided design (CAD) software for optical
waveguide circuits. In this paper, we present new boundary integral equations
(BIE's) that are suitable for CAD software for optical waveguide circuits.
Since general forms of the new BIE's have very complicated expressions, we
derive new BIE's for a simple three-ports optical waveguide circuits i.e.,
the optical branching circuit. The new BIE's can be solved numerically by the
conventional boundary element method (BEM). Since new BIE's are exact, the
exact solution can be obtained if sufficiently large computer memory and
computational time can be employed [1]-[3].

2. Branching Waveguide Circuit

The geometry of the problem to treat is shown in Fig. 1. For the mathe-
matical simplicity, we consider the two-dimensional problem for the case of
TE mode. The dielectric waveguide 1, 2 and 3 whose indices of refraction are
given by n, are joined together at an angles 84, 6, and 6 with positive x
axis as shown in Fig. 1. The index of refraction in the surrounding space is
given by nj. It is assumed that all waveguides satisfy the single-mode condi-
tion and only a TE-even mode propagates in waveguides.

We denote the outer surrounding space the region I and the inner space
in the waveguides the region II as shown in Fig. 1. We next denote the boun-
dary between the surrounding space and waveguides C. (j=1,2,3) and also denote
virtual boundaries between waveguides Cj. (i=1.2.j=Q,2.3) as shown in Fig. 2.

A dominant TE even-mode é incident From waveguide 2 to the branch. The
incident wave denoted by £=(2) s reflected, transmitted and scattered by
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the branch. The total electric fields denoted by E (x.y) E(x) near the branch
that are created by the incident wave are very comp11cated However, only
reflected or transmitted wave can survive at points far away from the branch
in each waveguide. Hence, we decompose total fields on the boundaries C]

C3 of waveguides 1,2,3 into field components as

E(x)=ES(x) + T.E*(I)(x) C, (§=1,3) (1)
E(x)=ES(x) + T3E+(2)(:) fE@ ot (2)

respectively, as shown in Fig. 1. In (1) and (2), T.(j=1,2,3) means the , .

transmission or reflection coefficient of the surfage wave denoted by E+(J)
in the j-th waveguide. Therefore, T, is the reflection coefficient in wave-
guide 2 and T and T, are the transmission coefficient in waveguide 1 and 3,
respectively. In (1} and EC(x) represents the field that is a result

of subtraction of the transm1tted waves or the incident plus the reflected

wave from the total fields. We call the field E€(x) the disturbed field.

3. Transmission and Reflection Coefficients

We first consider the case in which an observation point x approaches to
boundaries C=C 1+Co+C3 from the region II in Fig. 1. From Maxwell's equations
and Green's theorem. the well-known boundary integral equation for the total
electric field E(x) is:

1/2-E=fC(GzaE/an'—EaGZ/an')d1'. (3)

The integral means the Cauchy principal value integral with singularities re-
moved. The notation 3/3n stands for the derivative with respect to the outward
unit normal vector n to C as shown in Fig. 2. The expressions G. (i=1,2) re-
present Green's functions in the free space whose indices of re%ract1on are
given by n;(i=1,2) and they are expressed as

6;=6;(x|x") = -3/8+Hy( D (nikglxx"])  (i=1,2) (4)

where kn=w/c and H (2)(x) denotes the zero-th order Hankel function of the
second kind. It can be seen that the disturbed field E€(x) will be confined
to the vicinity of the branch, i.e., it will satisfy the following conditions:

ES(x) and 3ES(x)/3n - O. (r=< ,08=67, 6, and 63) (5)

We first consider a condition which must hold at points on the boundary
C, far away from the bend i.e., the condition at r== , 0=67. When we substi-
tute (1) and (2) into the integral equation (3), condition (5) shows that
following relation must hold at points on CT far away from the branch:

1/2.T1E+(1)=; (GzaEC/an' - E%6,/3n")d1"

+ET i, (GoE"(3)/an "~ E¥(3)36,/3n" )d1" (8 29E~(2) jan'~ E-Cz)aszfan;)dl'
J=1 J 2 (6

for r=c and 9=gq. Semi-infinite line integrals of the surface waves along

(j=1,2,3) in 16) can be rewritten with line integrals along Cjz (j=1,2,3)
b§ Green s theorem as

1/2.6%3) —f (6,E*(3)/an"~ E¥(I)36,/an" )1
J

—146—




=1 (6,06*(3) /30"~ E¥(Ia6,/n")d1" (3=1,2,3) (7)
6
i2

where vector n normal to Cjz are shown in Fig. 2. By using (7), we can re-

write (6) as
b TiJ (G,3E*(3) /3n'— E+(3)36,/5n" )d1"
= (6p3ES/an" - EC3G,/an")d1'~ (Gp3E~(¥)/an'- E-(Da6,/an")d1'  (8)
C C
22
for r=w and 6=87. Since the observation point x considered here is far away
from the boundaries Cg¥. and the disturbed field E®(x) is assumed to be non-

zero in the vicinity the branch, we can use the asymptotic form of the
Hankel function as

J

6;(xIx')= A(r)g;(81x') + O[(nikgr)™3/2]  (i=1,2) (9)
where A(r)= —j/4[2J/(Rn1kOr)]1/2exp(—jn1k0r) (10)
gi(BIx')=exp(jn1kox'cose + jnikoy'sine). (1=7.,'2) (11)

After substituting equation (9) into (8), we divide both sides of the
equation by the common function A(r). Setting rs« in the resulting equation,
we can obtain a linear equation. We next consider conditions that must hold
at points on boundaries C, and C3 far away from the branch. By the same pro-
cedure as that which is used for the case of 6=67. we can also obtain the
similar equations for r=» and 6=82.83. Finally, we can obtain a system of

three linear equations for unknown coefficients Tj as

o J§1AijTj= B, (1=1,2,3) (12)
Bl [9p(8;1x")3E*(3) /an"-E+(3)ag, (6, 1x" ) /an " 1d1" (13)
32

Bi=IC [9p(6;]1x')3E/an"-EC3g, (8, x" ) /on" 1d1"

~f [92(61IX')BEﬁ(z)/an'~E_(2)agz(8i|x')/an']d1'. (i=1.2,3) (14)
C
22
If we solve the system of linear equations (12) for unknown coefficients T

the transmission coefficient and the reflection coefficient Tj can be exprgss-
ed in terms of the disturbed field E¢(x) as

Tj=j [Nj(x')aEC/an' - Ecawj(x')/an']d1'— M, (3=1,2,3) (15)
C

J

where

wj(xl)= ‘g1é1392(81|xf)/£A (16)
i=

M =S, [92(851x")3E™ (@) an"'-E~(Blag,(a | x")/an' 141" /g (3=1.2,3)  (17)

2
and QA=de%|A1jtand A;: is determinant of cofactor of element Aij‘

iJ
4. New Boundary Integral Equations
We first substitute expressions (15) into (1) and (2), and then substitute
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resulting expressions of total fields into the original integral equation (3).
Using relations (7), we can Fina11g derive the following boundary integral
equation for the disturbed field E (x) for the case in which the observation
point x approaches the boundaries C from (inner) region II:

1/2-E°=IC(P28EC/8n'—EC8P2/8n')d]' =S5 (%), (18)
where
. N j . I 1 (3)(x
Po=G(xIx") j; U@ GoH(x"), S00=U B (x) jglmjuz” ( )/?ﬁ\g)
and
0,43 (x)=f (6,2E7(3)/3n'-E+(3)3G, /an" )d1". (4=1,2,§=1,2,3) (20)
Jil

So far, we have considered the case in which an observation point x ap-
proaches the boundaries C from the (interior) region II. We next consider
the case in which the observation point approaches to the boundaries C from
the (exterior) region I. From Maxwell's equations and Green's theorem, the
integral equation for the disturbed electric field E®(x) is

1/2+EC=f (P43E€/3n'-E€3P1/3n")d1'-5¢(x), (21)
c
where

pi=—61(xx" )= £ Uy (D GW (x"), 570020, (x)- 3 MU (%) /-
; J : J
j=1 j=1 22)

The original BIE (4) cannot be applied to the problem containing dielec-
tric waveguides of infinite length such as branching waveguides, because they
have infinite-sized boundaries. In contrast, since the disturbed field vanish-
es far from the branch, we can solve the new BIE's (18) and (21) numerically
by the conventional BEM (or moment method) as if the waveguide had finite-
sized boundaries as in the scattering problem for a finite-sized object. More-
over, the structure of the new BIE's is similar to that of the original BIE's.
Hence, we can use various techniques that were developed for solving original
BEI's to solve BIE's (18) and (21).

5. Conclusion

New BIE's have been presented that are suitable for the basic theory of
CAD software for optical waveguide circuits. The new BIE's are exact and can
be solved numerically by the conventional BEM. The concrete expressions of
the new BIE's are derived for a typical dielectric optical circuit, i.e., the
two-dimensional branching waveguide. It is easy to extend new BIE's to other
complicated dielectric optical waveguide circuits. For example, new BIE's and
numerical examples for the corner bend of dielectric waveguide are shown in
reference [3]. Since the theory is based on the exact theory, the solution is
exact if sufficiently large computer memory and computational time can be
emp loyed.
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