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Abstract 
An integro-difference time-domain (IDTD) method, which is based on the integral form of 
Maxwell’s equations, has been recently developed to achieve 4th order accuracy in space 
and time by taking into account the spatial and temporal variations of electromagnetic fields 
within each computational cell [1]. The IDTD method maintains the same numerical structure 
and Courant-Friedrichs-Lewy (CFL) stability criteria as the conventional second-order FDTD 
method. In this paper, we present the unique features of IDTD and some numerical results 
that demonstrate the higher order accuracy and superior dispersion properties of the IDTD 
method. 
 
I. Introduction 

The initial FDTD algorithm developed by Yee [2] was obtained by using the differential 
form of Maxwell’s curl equations and is second order accurate both in space and in time. It is 
well recognized, however, that Maxwell’s integral equations can be useful in analyzing 
spatial variations of electromagnetic fields within each computational cell, and some 
algorithms have been developed in an attempt to characterize these spatial variations more 
accurately [3]. Most of these algorithms are second order accurate and become identical to 
Yee’s original FDTD difference equations in the computational domain away from a material 
interface. 

Recently, an integro-difference time-domain (IDTD) method was introduced that exhibits 
fourth order (4, 4) accuracy in space and time. The IDTD method uses the integral form of 
Maxwell’s equations and its higher order accuracy is obtained by taking into account the 
spatial and temporal variations of electromagnetic fields within each computational cell. In 
the algorithm, the electromagnetic fields within each cell are represented by space and time 
integrals (or integral averages) of the fields, i.e., the electric and magnetic fluxes ) ,( BD are 
represented by the surface-integral average, and the electric and magnetic fields ) ,( HE by 
the line and time integral average. The integral average fields in the staggered update 
equations are then associated with constitutive relations for these fields.  

The numerical structure of the IDTD method remains the same as the conventional 
second-order update equations and, more importantly, does not require the storage of field 
variables at the previous time steps to obtain the fourth order accuracy in time.  It is these 
integral average fields that are updated by the IDTD difference equations, thus numerical 
integration is not necessary to perform integral averages.  

Dispersion analysis indicates that the IDTD algorithm exhibits superior dispersion 
properties compared to the conventional FDTD method, while the Courant-Friedrichs-Lewy 
(CFL) stability criterion of IDTD is shown to be the same as the conventional FDTD method.  

In this paper we present these unique features of the IDTD algorithm and present some 
numerical examples that demonstrate the numerical accuracy and superior dispersion 
properties of the IDTD method. It will be shown that the IDTD method is significantly more 
accurate than other fourth order (2, 4) accurate FDTD methods [4]-[5], not to mention the 
standard second-order FDTD methods. 
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II. The Integro-Difference Time-Domain (IDTD) METHOD 
The IDTD update equations are obtained by considering the integral form of Maxwell’s 

equations over a computational cell on the Yee computational lattice [2].  
 Specifically, Maxwell’s integral equations yield the following space-time integro-

difference equations [1], 
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Here 

i
tzyA ),,(  is the line integral average of a scalar field ),,,( tzyxA , 

ji
txA

,
),(  is the 

surface-integral average, and nA )(r is the time integral average. Note that the IDTD update 
equations are given in terms of line, surface and time integral averages over space-time 
coordinates in a computational lattice.  

 The IDTD method uses the leapfrog scheme where the surface-integral averaged electric 
displacements are updated in time. After each update, it will be necessary to change the 
surface-integral averaged fields to the line and time integral averaged fields in order to 
update the magnetic flux. The constitutive relations that relate the surface-integral averaged 
fluxes (D, B) to the line and time integral averaged fields (E, H) are given by [1] 
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The second terms in the right side of (2) and (3) are the higher order correction due to 
spatial and temporal variations of zD  within a unit cell in space-time coordinates. We note 
that the temporal variation zn D2δ  in (2) can be obtained in terms of the spatial variations 

  ,, 22
zjzi DD δδ  and zk D2δ  via the wave equation. For example, we can represent zn D2δ  as  
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This representation of 2

nδ  in terms of spatial variations reduces computational resources 
significantly since it is not necessary to store field variables in memory at three or more 
successive time steps to obtain 2

nδ  by finite-difference approximations.   
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III. IDTD Dispersion Relation and Stability Condition 
We consider electromagnetic waves that are governed by the IDTD update equations and 

constitutive relations - equations (1), (2), and (3). Following a standard dispersion analysis, 
we can obtain the dispersion relation for IDTD as [1], 
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where 
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The brackets in (6) contain the higher order correction terms due to the spatial and temporal 
variations of electromagnetic fields within a computational cell.  

It is well known that the CFL stability criterion can be obtained directly from the dispersion 
relation. After a straightforward analysis, the CFL condition for the IDTD algorithm is 
obtained as [1], 
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This stability criteria is identical to the stability limits of Yee’s second order FDTD scheme 

based on the differential formulation [2], and it is more lenient than the stability limit of any 
other higher order FDTD schemes such as Fang’s or Lan’s higher order FDTD schemes 

( ) )2,2( 7/6 FDTDtt ∆∆ =  [4]-[5]. 
 
IV. Numerical Results 

We simulate the propagation of electromagnetic waves excited by a differentiated 
Gaussian point source. The current source is located at the center of the three dimensional 
computational domain and is given by 
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Here 0t  is the time at the center of the Gaussian pulse and wt  is the Gaussian width. We 
have chosen tt ∆400 =  and ttw ∆5=  where the time step t∆  is chosen to be 0.04 nsec. In 
the simulation, we have used a seven-layer conventional PML boundary condition located 
three cells away from the field point.   

The zE  field component is obtained at the field point ( 0 ,m 0.25 ,0 ) on the y-axis as a 
function of time. In our results, we have used the CFL criterion (7) for the (4,4) IDTD and 
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second order FDTD, and the stricter and narrower time step, ,)7/6( IDTDtt ∆∆ =  for the fourth 
order (2,4) FDTD.  

In order to compare and analyze the numerical accuracy between different algorithms, we 
computed the field error in the computed zE  field, which is defined as the absolute value of 
the difference between the analytical and numerical results, with the grid 
size m 025.0=== zyx ∆∆∆ . The field errors corresponding to the zE  field is shown in Fig. 1. 
It clearly indicates that the field errors are significantly reduced by the higher order 
algorithms, and the numerical error of (4,4) IDTD algorithm is approximately 60 % to 70 % of 
that of the (2,4) FDTD method.  We note that the IDTD numerical accuracy is achieved even 
with a larger time stencil by a factor of 7/6 of the (2,4) FDTD results. The superior numerical 
accuracy of (4,4) IDTD algorithm is due to the fact that the IDTD algorithm is also fourth 
order accurate in time as opposed to the (2,4) FDTD.   
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Fig. 2 shows the dispersion error of the waves propagating along the grid axis. The result 

indicates that the dispersion error for the IDTD case is negligible compared with the second 
order and fourth order (2,4) FDTD dispersion errors.  

These numerical results demonstrate that the fourth-order IDTD method exhibits superior 
numerical accuracy to other fourth order (2, 4) FDTD methods. Furthermore the IDTD 
method is shown to be numerically efficient since it maintains the same numerical structure 
and uses the same CFL stability criterion as the conventional second order FDTD method. 
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Fig. 1. Average relative field errors: 
second-order  FDTD (dotted) and fourth-
order FDTD (dashed) and the IDTD 
(solid line). 

Fig. 2. Relative dispersion error:  
second-order  FDTD (dotted) and fourth-
order (dashed) FDTD methods, IDTD 
(solid line).
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