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The electric dyadic Green's function, unlike the magnetic dyadic Green's
function and the Green's functions of linear circuit theory, requires the
specification of two_dyadics, the conventional dyadic outside the source point
and a source dyadic L which is determined solely from the geometry of the

"principal volume” which is chosen to exclude the source point (1-4). Speci-
fically, the electric field E(r) can be written [3)
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where Ve is the principal volume which excludes the singularity of the conven-

tional electric dyadic Green's function E;(;,;') when r 18 in the source
region. The source dyadic L is defined by an integration over the surface Se

(with unit normal n) of the principal volume:
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The contribution from the dyadic L, which has been evaluated and tabu-
lated for a number of principal volumes [3], is of practical importance
since it is essential to the correct handling of the singularity in the
numerical analysis of many problems (5,6].

The first property of L derived from eq. (2) is that the value of L
depends only on the shape and orientation of the principal volume surface
S and the position of the singularity (R=0) within the principal volume.

Secondly, eq. (2) is expanded and manipulated in rectangular coordinates
to prove that L is always a symmetric dyadic regardless of how unsymmetric
the principal volume. And thirdly, the trace of the dyadic L is shown to
equal unity for an arbitrary principal volume. These three mathematical
properties serve as helpful checkpoints in verifying the analytical or
numerical evaluation of L from eq. (2) for any principal volume.

From a mathematical point of view, T defined by eq. (2) has the form
of a generalized or dyadic solid angle normalized by 1/4n. That is, if a

dot product were placed between n and R in eq. (2), the integration would be
that’ of a solid angle integrated over the closed surface Se’ resulting in

a value of 47 steradians, regardless of the geometry of the principal volume.
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With no dot between i and R, the integration can still be considered to_have
units of steradians, but the result is the symmetric,unit-trace dyadic L
whose value does depend on the geometry of the principal volume. An ap-
propriate mathematical name for L might be the "normalized dyadic solid
angle."

The dyadic L has an elegant physical interpretation which lends impor-
tant insight into the mathematical results. Suppose one were to measure the
electric field at a point within a current distribution by removing an infini-
tesimally small volume of current and inserting an ideal point_probe. The
measured field would be that given by eq. (1) but without the L term, since
the current J at this point has been removed. This measured or "local" field
would also depend upon the shape of the infinitesimal volume and its relative
position and orientation with respect to the point probe, because it can be
shown that each term separately in eq. (2) (and thus the first term) displays
said dependence. Thus L determines the perturbation in electric field caused
by the hypothetical measurement scheme of removing an infinitesimally small
volume of current V_ of given shape, and position and orientation with respect
to an ideal point pEobe, which measures the electric field.

The perturbation of electric field caused by the removal of an infin-
itesimal volume of dielectric material is a familiar phenomenon in electro-
statics. And, in fact, if the electrostatic field is correctly expressed in
terms of polarization within dielectric material, a source dyadic identical
to L appears. Thus, eqs. (1) and (2) can be used to generalize the electro-
static concept of local field to time~harmonic fields.

Finally, the actual size, in practice, of the principal volume Ve
required to compute accurately the integral in eq. (1) is discussed.
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