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SYNOPSIS

The concept of "reaction' in vacuum electromagnetic theory is developed
systematically to electromagnetic fields in general dispersive media. The
reaction is introduced as a measure of the amount of the interactions between
field source and field detector. It is found that the equations of the reaction
field are adjoint to those of the electromagnetic fields. The Lagrangian
formulations of the electromagnetic fields are obtained by treating the reaction
fields as the conjugate fields to the electromagnetic fields. Here the
Lagrangians are interpreted as the variational expressions of the mount of the
interactions of field source with field detector. A reciprocity theorem having
clear-cut physical meaning is derived with the use of the concept of '"reaction
field".

1. Introduction

The concept of "reaction" in vacuum electromagnetic theory has been
introduced as a physical observable representing the amount of interactions
between a field source and some other field source. The concept has been used
to simplify the boundary value problems or to obtain variational expressions in
the scattering problems.

The aim of the present article is to extend systematically the concept of
"reaction” to the case of the electromagnetic fields in general dispersive media.

2. "Reaction fields" in Dispersive Media

Let us consider harmonic electromagnetic fields in dispersive media. The
Maxwell equations for the harmonic fields with anguler frequency (&) are assumed
to be

v x Er)= - a'w,b:IH("’) , (1)

v xIH(N)= jw (g Eur)+ J(¥) @

where E;Bu») is a permittivity temsor of temporally dispersive medium and, for
simplicity, its spatial dispersion is not taken into account. The electric
field [E(lr) at pointir which is produced by the current source 3’(»"} located
at W: is represented with the use of the dyadic green functionm,

N =fdfr'6i,,3 Cir ) 1H) Jg(ir), 3)

where the suffixes « @ meanx,Y, Z and the repeated indices are assumed to be
summed. Taking into account the fact that the 'reaction" has been introduced

into the vacuum electromagnetic theory as alTeasure of the interactions getween
a field source and some other field source,”’ we define the "reaction" E¢“’) of
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the harmonic fields in dispersive media by the equation:

E;(IH= fd:r’s@(:r')q,;,, (' fw) (4

Heres,g(lr') means the amount of the interactions betwen the field detector
located at " and the 2 -component of the electric field on that point. The
reaction defined above represents the amount of the interactions of a unit point
current source located at " with the field detectors at some other points.

Now we derive the equations of the reaction field E"(’,r) . From the field
equations (1) and (2), we have

2 .
Txx E(nr) - wH(GpEGr)= —gupuT (5)
Introducing the spatial Fourier transform,
| .
Ir) = Jdm exp(-jikir) E (i) 6
E ¢ P 1o~ k- Ir) ) (6)
into eq.(5), we have after simple algebraic manipulation,
\ -1
Eg(ir)= —FwH (0)gy T, (k) ¢))

~t
where(0)ga is the (& ) component of the inverse of the matrix (D) having
the matrix element:

2 2
Do = K S4p — Rukp ~ WK &g ®
Substituting the unit point current source of the form,
pa N ’,
Tlwr)= j‘$(w—,ru= Jf—(zi—w3 fdl’? exp(—J.[k. (i tr;)' (9)

into eq.(7) and using the inverse Fourier transform of [f(lk/ , we have the
Fourier integral expression for the dyadic Green function,

Gy (rIF)= —jw pJauk(o); erp(-jik (r-IF1) (10)

Using the above with eq. (4), we have

. -1 -
E) (i) =}dlk Sglt)(—JwH (D) gy exp(—ge-Ir)) -
1

where we used the relation Dgy (Ik)= Daal~lk) which is easily seen from eq.(8).
The equation (11) shows that the Fourier component of E:“” is given by

E, (k) = ~dw M Sp“k)(o);o( . @2

Comparing eq.(7) with eq.(12) and noting that the electric field E&(lr') obeys
eq.(s), we find that the reaction field E’d"“r) satisfies

Tx 9 x Elr)— G, (s,ﬁ)TE*ur}= —JwMASar) (13)

where (&Q)T means the transposed matrix of ( &g/
Introducing the "magnetic reaction" fH’(ll’)through

v x E"'(,r) = —jw [H*(ll"}’ (14)
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into eq.(13), we obtain

vxIHv) = dw ()" EYw + S (1), 5

It is shown that these equations (14) and (15) of the '"reaction fields" take
the adjoint forms of the field equations (1) and (2). In other words, the
adjoint field equations (14) and (15) are found to describe the physical
observable of the "reaction field" defined by eqs.(4) and (14).

3. Reciprocity theorem 2)
Following the usual procedure, we have the reciprocity theorem from
egqs. (1), (2), (14) and (15):

t
S(EK - E*fo)‘m = Jvolll’('J-E -S'E) ) (16)
3

where S denotes the surface of a given volume V , U is outward unit vector
normal to S . Here, on the right hand side, the first term /4y J-F' represents
the total amount of the "reaction field" produced by the ciirrent distribution
J(iin the volumelV , the second term /dI?'.S-E is a part of the amount of the
"reaction field" which is dissipated on the detectors contained in the volume

V , and the left-hand side is interpreted as the outward flow of the “reaction
field" from the surface S . In the limit of infinite volume, the surface
integral given by the left hand side of eq.(16) vanilshes because of the
dissipations of the medium, so that we have

fars € = [far TET an

Here the left hand side represents the whole amount of the interactions of the
electric fieldff(w) with the field detectorS(lv) and on the right hand side, it 1is
equivalently evaluated at the position of the field source Jcw) with the use of
the concept of "reaction field" E*(¥) . The point worthy of note here is that

in the reciprocity theorem already derived,E‘((r) and IHY"‘) have been considered
as the electromagnetic field in another dispersive medium having transposed
permittivity tensor (W)T , whereas, in the above reciprocity theorem they
represent the physical observable called "reaction field ", which is defined
in the same medium as the adjoint field to the electromagnetic field .

4. Variational Formulae
First we consider the quantity |, defined by

L=/drS-E +]J!r[E}ar)-(—vxﬁ+jw(§,ﬁ)E+W)

+H ) (X E + Jwlg H) ] (18)
The first variation of L. for the small variations in the field'E is given by
o L:Jdlr SE-[S- vle*+jw(gdB;rE+] (19)

where the partial integration was done under the fixed boundary condition. The
stationary condition§ gl =0 gives rise to eq.(15). The equation (14) is also
obtained from the stationary property of the firsg variation of L with respect
tofHf . Similarly the small variations ofE+ and K in the quantity L bring about
the electromagnetic fields equations (1) and (2). The value of L under the
stationary condition becomes
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which represents the total amount of the interactions of the field source

with the field detector §(fr) .
The other possible Lagrangian is of fractional type,

Vo JwrsE JawzE
Jd;r[lH*-(vxn;+jwwH)+!E*-(vxlH-jw(g.,,)!E)] ,

(21)

It is shown that the first variation of L,, for the small variations inlE ,H ,
E* and lH*vanishes, when these quantities are subject to the field equations
(1), (2), (14) and (15).

In these variational formulations (18) and (21), the field source J(Mand
the detector source S{i) were both fixed. Whereas, in the following variational
expression for integral equation, these quantities are varied under the condition
that E(w) and [H(#) are both fixed.

£ {far (185 00"

(22)

jdlr dir’ [S( w) Qr (el J( IP’;]

It is also shown that the first variation of [;” for the small variations in T(wm
and§([r) vanishes when these quantities satisfy the integral equations (3) and
(4). The variational formula (22) derived with the use of the concept of the
reaction field is a generalizatiﬁl of the usual stationary expression in the case
of vacuum electromagnetic fields ‘which is given formally by putting E= E* and
T =8 in eq.(22). The variational expression (22) is applicable to the
electromagnetic fields in anisotropic dissipative medium.
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