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1. Introduction 

For past decades many numerical methods has been developed in electromagnetics for time and 
frequency domains. The capability of individual method has continuously been increased, and so 
numerical techniques have been successfully applied to a wide range of applications from a calculation 
of radar cross section of a complicated object to a RF circuit optimization. However, due to computer 
capability numerical methods have been usually used for a moderate frequency range and/or scatterers 
of a moderate size. In very high or low frequencies, analytical techniques may have advantages over 
numerical methods yet.  
Low frequency band has been widely used in many applications such as medical imaging since the 
band provides some advantages, for example good penetration through highly lossy media such as 
human body. However, at very low frequencies it is well known that the conventional numerical 
methods fail to generate correct results so that to solve the problem a special basis function such as 
loop-star basis function has to be used [1]. In this frequency range, any time domain technique such as 
finite difference time domain (FDTD) also may fail since to accurately model a scatterer, a very small 
cell should be used and so the time step is automatically very small, but global simulation time may be 
very large. Therefore due to the dispersion error of FDTD algorithm, the overall simulation accuracy is 
drastically degenerated.  
Since in very low frequencies a scatterer may be electrically very small, interaction inside the scatterer 
may be very weak, and thus negligible. Hence in frequency domain, (distorted) Born approximation 
has been widely used for the frequencies [2]. To calculate time domain response of a complex scatterer, 
first a frequency domain response is computed and then using Fourier transform, the desired time 
domain solution is constructed. However, this procedure is very inefficient with respect to 
computational complexity. Hence in this paper, an efficient time domain Born approximation is 
formulated, and to maximize time step, sampling theorem is used. 
 
2. Formulation 

Figure 1 shows the problem geometry where a field is incident on an inhomogeneous dielectric 
scatterer with a dielectric constant ( ', ')r x yε . Frequency of interest is very low (< kHz) so that the size 
of the scatterer may be electrically very small. For this kind of situation, Born approximation can 
accurately estimate a polarization current inside the dielectric object, which gives 

0 0 ( 1) ( , ')i
rJ ik Y E rε ϖ≈ − − in frequency domain [2]. 

 
Figure 1: Problem Geometry 

 
Therefore an electric Hertz vector induced by the current can be simply written as  

( ', ')r x yε
iE

'v
0ε
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where ( , ')iE t r  is the incident field in time domain. To obtain the time domain Hertz vector 
representation, Fourier transform is taken in the both sides of the above equation. The Hertz potential 
in time domain can be expressed as  
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where 'r i σε ε
ϖ

= + , σ  is a conductivity of the scatterer. Using the properties of Fourier transform 

[3], (1) can be evaluated into a more concise form as  
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where c is a light velocity of the host medium. To obtain (2) it is assumed that iE exists from 0t = . 
Since the scatterer may have very complicated shape, it is very hard to numerically evaluate the 
integral with respect to 'v in (2). Hence the scatterer is divided into many small volumes, the integral is 
performed over the cells, and then summarized. Since the electric field may be a smooth function, the 
field can be assumed a constant over each cell, and so the integral over the scatterer can be rewritten as 

' '
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| ' | | ' |
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where ncr  is a center of the nth cell. 

To efficiently deal with an arbitrary incident field, iE , sampling theorem can be used. In general, 
iE is a bandlimted process, which means that | ( ) | 0iE ϖ = for | | Bϖ > . Therefore iE can be exactly 

interpolated using a few samples as 
 

( ) ( )sin c[ ( )]i i

n
E t E nT B t nT

∞

=−∞

= −∑                       (3) 

where /T Bπ= , and sin c( ) sin( ) /x x x= . Since iE  is localized in time domain, the summation 

in (3) can be truncated. In (3) ( )iE nT  are samples at t nT= , and so these are not a function of time. 
Only sin c( )⋅  is dependant on time in (3). After some algebraic manipulations, the Hertz vector can be 
given by 
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where 
0

sinSi( )
x tx dt

t
= ∫ is known as sine integral [3]. 

The scattered electric field can be easily computed from the obtained Hertz potential as 
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If the Hertz vector is written in a form of
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electric field can be written as 
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−∫ , and G is the combination of sin c( )⋅ and Si( )⋅ in (4). The derivatives of 

F and G  can be computed analytically. Based on the above equations, the electric field can be 
computed at the same sampling time, t nT= , and then using sampling theorem the electric field can 
be exactly recomputed at any wanted time. Therefore the required time step may be sufficiently large, 
and so the total computational complexity is very low compared with other time domain methods. 
 
3. Numerical Results 

To verify the proposed expressions, the operating frequency and the bandwidth are set at 100Hz and 
50Mz, respectively. First scattering by a small cubic box located at a origin is considered whose size is 
12.5 12.5 12.5cm× × , and dielectric constant and conductivity are 60 and 10, respectively. The 
scattered field is computed at (0, 0, -1) when a Gaussian plane wave is incident at 0o

iθ = and 

0o
iϕ = whose magnitude is 1/ 3( )x y z+ + . Figure 2 shows two x-directed scattered electric field 

components in time domain which are calculated by two methods: the proposed formulation and the 
conventional frequency domain Born approximation. As seen in the figure the two results are in 
excellent agreement. Figure 3 shows the total field of z-directed component. As expected the scattered 
field reduces the incident field since the observation point is inside the shadow region. Next scattering 
from a small dielectric sphere with 5cm radius is considered since a very accurate approximate 
solution, Rayleigh solution, is known for the structure. For the calculation, the dielectric constant is 
reduced to 1.1, but conductivity is kept at 10. To accurately model the sphere, 552 very small cells 
1 1 1cm× × are used. The observation point and plane wave incidence angles are the same as the 
previous computation, but an h-polarized incident wave is assumed for this case. The proposed 
solution generates a very accurate result as seen in the figure 4. The observed small discrepancies are 
caused by the discretization error.  
 
4. Conclusions 

In this paper, an efficient time domain formulation is proposed for low frequency scattering by a 
very complex shaped inhomogeneous dielectric object. The formulation is based on Born 
approximation and sampling theorem. By comparisons with a known frequency Born approximation 
and Rayleigh formulation, the proposed equations are verified for several examples 
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Figure 2: xE components for scattering by a cubic box 
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Figure 3: zE components for scattering by a cubic box 
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Figure 4: yE components for scattering by a sphere 
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