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Abstract

3D Hybrid Finite Element - Finite Difference Time Domain
(FE/FDTD) Method is developed and applied to the numerical
modeling of antennas. The antenna geometry is modeled
using tetrahedral finite element mesh. Pyramidal elements
are introduced in the transition from unstructured tetrahedral
elements to structured hexahedral elements. The finite element
formulation incorporates the excitation of antennas using
coaxial line or stripline ports with Transverse Electromagnetic
Mode (TEM). Computation of reflection coefficient of typical
antennas is presented.

1. INTRODUCTION

With requirements on antenna characteristics becoming more
complex due to pervasive use of wireless communication
devices, numerical modeling of antennas becomes an integral
and vital step in antenna design. Efficient numerical techniques
for more accurate modeling of complex antennas and their
radiation phenomena are in need, more than before. The
finite difference time domain (FDTD) algorithm is a popular
numerical method. The algorithm gained popularity mainly
due to the following reasons viz., a) it is explicit in nature,
i.e., the solution does not require any matrix inversion; b)
Mesh generation is relatively easy as compared to unstructured
mesh generation; c) ability to handle material inhomogeneity is
inherent; d) Courant condition for numerical stability is well
established; e) Easier implementation of Perfectly Matched
Layer(PML) to model unbounded problems. However, the
major limitation of the method lies with the staircasing errors
due to the structured cartesian nature of the computational
grid. The modeled geometry must conform to the grid, in
contrast to numerical methods based on unstructured grids,
such as finite element method (FEM). FEM is well-established
and widely used for time-harmonic solution of Maxwell’s
equations. In comparison, the Finite Element Time Domain
(FETD) method [1],[8] gains popularity only recently. The
unstructured nature of the time domain version of FEM
gives a clear advantage over FDTD in modeling complex
antenna geometeries. Although most of the concepts developed

for FEM in the frequency domain can be extended to its
time domain counterpart, the numerical implementation of
FETD is complicated and often inefficient. For instance, the
implementation of the widely used PML in frequency domain
FEM and FDTD methods is not straightforward in FETD.
Apart from the difficulty in the implementation of PML in
FETD, another disadvantage is the implicit nature of the field
update equations. FETD method requires a matrix solution at
each time step. The hybrid FE/FDTD method [3],[4] over-
comes the disadvantage of FETD viz., modeling of PML
for unbounded problems and that of FDTD viz., inaccuracy
in modeling of complicated geometeries. In this paper, we
show some results obtained in modeling certain antennas using
the hybrid FE/FDTD method. The hybrid algorithm involves
introduction of pyramidal elements to provide a conforming
interface between the FDTD cartesian grid and finite element
tetrahedral mesh. The requirement on mesh generation for the
hybrid algorithm and a simple strategy that we use are briefly
discussed. Modeling of antenna feed structure which support
transverse electromagnetic mode (TEM) and extraction of
input impedance will be presented. Finally, the method is
applied to compute the input impedance of some typical
antennas.

2. HYBRID FE/FDTD METHOD

FETD method uses tangential vector edge element basis func-
tions for the electric field on a tetrahedral mesh. On the other
hand, FDTD has both electric and magnetic field unknowns
on two regular but staggered cartesian grids. Each FDTD
cell can be treated as a hexahedral element with the electric
field unknowns placed on the edges. When interfacing the
FDTD and FETD grids with tetrahedral elements, conformity
of certain tetrahedral edges is lost. These edges are basically
along the diagonal of the rectangular face of FDTD cell, as
shown in Fig. 1(a). In [2], a second order accurate interpolation
is used for the diagonal edge (non-conforming) unknowns
based on the four FDTD unknowns along the edges of rectan-
gular face. These unknowns were used as Dirichlet boundary
condition for the FETD update. The algorithm was reported
to be numerically unstable. A stable hybridization of FETD
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Fig. 1: Steps involved in Hybrid Mesh Generation.

and FDTD based on the equivalence between FDTD and
FETD on hexahedral elements under the following conditions
viz., a) using trapezoidal rule to evaluate the integrals for
mass and stiffness matrices of hexahedral elements, and b)
using

� � �
in the

� �
scheme [1] for temporal discretization

was implemented in [3],[4]. This method, however, would
require introduction of pyramidal elements to eliminate non-
conforming diagonal edges in the transition from tetrahedral
to hexahedral elements.

A. Hybrid Mesh Generation

The first step in the hybrid mesh generation involves basic
unstructured tetrahedral mesh generation of the antenna struc-
ture. Outer boundary of the tetrahedral mesh must have a
surface triangulation consistent with the FDTD cell size,� 	 .
Layer of hexahedral elements with edge length� 	 is then
added around the tetrahedral mesh. In the interface between
tetrahedral and hexahedral elements, the only non-conforming
edges(tetrahedral) must form the diagonals of the hexahedral
faces on the interface. The fact that this requirement is not
guranteed in general by most of the available unstructured
mesh generators remains a major hurdle in the application
of the hybrid algorithm. Fig. 1(a), shows the hexahedral
and tetrahedral regions of the mesh, separated to show the
rectangular and triangular faces on their interface. The number
of nodes on the interface from the tetrahedral mesh and the
hexahedral mesh are the same. The number of edges on the
tetrahedral interface is greater than the number of edges on the
hexahedral interface by the number of rectangular faces on the
interface. Once such a mesh is generated, hexahedral elements
with a face on the interface is split into two tetrahedra and five
pyramidal elements, as shown in Fig. 1(b), leading to the final
hybrid mesh shown in Fig. 1(c).

B. Pyramidal Edge Elements

Edge vector basis functions has been used extensively on tetra-
hedral and hexahedral elements. For the 3D Hybrid FE/FDTD
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Fig. 2: Pyramidal element with reference node and edge numbering.

method, similar basis functions are defined over the pyramidal
elements. Edge vector basis functions on pyramidal elements
was designed in [6]. Each basis function is associated with
a particular edge of the pyramidal element, similar to edge
vector basis functions on tetrahedral elements. Thus, each
pyramidal element has eight degrees of freedom, correspond-
ing to the number of edges. With reference to Fig. 2, the edge
basis functions are given as�� � � � � � � � � � � � � � � � � � � � � � � # �

(1)

for the four edges on the base of the pyramidal element formed
by the nodes% ' ) ' + ' - and�� � � � � � � � � � � � � � �

(2)

for the other four oblique edges of the pyramid.
� �

is the nodal
shape function of unit value at node% and zero at other nodes
[6]. In the transition from tetrahedral to hexahedral elements
with edge length� 	 , only a particular class of pyramidal
elements of height� 	 0 1 and a square base of sidelength� 	
are generated. Once the basis funtions for such pyramids are
defined, their mass and stiffness matrices can be evaluated
using a symbolic computation tool such as MathematicaR
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and is obtained as
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In general, there are six possible orientations for the pyramidal
elements in the hybrid mesh. The mass and stiffness matrices
are independent of its orientation.

C. Port Modeling

The antenna structure is located in the finite element region.
Hence, the FETD formulation must include the excitation of
antenna using ports. The FETD method used in this paper
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can model the excitation of transverse electromagnetic mode
(TEM) in coaxial line or stripline feed. Such feed are typically
used for antennas operating with TEM mode, and hence,
higher order modes (which are evanescent) can be neglected.
However, the transmission line should be sufficiently long
for the higher order modes to attenuate significantly [7].
In the time-harmonic case, the total electric fields inside a
transmission line exciting a TEM wave in the

� �
direction is

given by
�� � �� � � � � �� � 
 �

� � � �� � � � � � � � � � � � � �� � � � � � � �
(5)

where
�� � � � is the modal field distribution,

� �
is the incident

modal amplitude,
�

is the reflection coefficient of TEM mode
and  is the propagation constant of the TEM mode inside
the transmission line. For dielectric filled coaxial lines and
striplines,  � " # � � $ � " # � & � ( where

# � is the dielectric
constant of the medium. From (5),)* , � , �� � �  . 0 	 �� 
 �  �  . 0 	 �� � � � 


(6)

where
)* � � )�

is the outward normal unit vector and. 0 	 �2 
 �)* , �2 , )* is the tangential trace of
�2 . From (6), the time-

dependent boundary condition for the electric field in a port
(filled with non-magnetic material) excited by TEM mode is
obtained as)* , � , �� 	 6 
 � " # �( 77 6 . 0 	 �� 	 6 
 
 �  " # �( 77 6 . 0 	 �� � � � 	 6 
 


(7)

Thus, the initial value problem in the FETD region is the time-
dependent vector Helmholtz’s equation

� , ; � =� � , �� 	 6 
 � # �( ? 7 ?7 6 ? �� 	 6 
 � � � in A (8)

with the boundary condition (7) on the port surface and the
initial conditions

�� 	 � 
 � �
and BB 0 �� 	 6 
 C 0 D $ � �

. Testing (8)
with suitable test function results in the following weak form
viz.,
seek

�� 	 6 

such thatE F H � , �I 	 6 
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 ]

Using (7) in (9) with
�� � � � 	 6 
 � � � 	 6 
 �� � � � and expand-

ing the solution
�� 	 6 


using edge element basis functions
defined over tetrahedral, pyramidal and hexahedral elements
as

�� 	 6 
 � _ a� D = � � 	 6 
 �� �
leads to the following system of

ordinary differential equation viz.,

b c � e( f LL 6 c � e( ? i L ?L 6 ? c �  ( j LL 6 � � 	 6 

(10)

where b 	 � � � 
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is the excitation waveform with significant spectral con-
tents in the frequency band of interest. The modal distribution�� � � � is obtained by a 2D finite element eigenvalue solver.
The eigenvector solution for the dominant mode gives the
modal distribution of TEM mode. For the 2D problem, the
triangulation of the port surface in the tetrahedral mesh is
employed as the finite element mesh. The modal distribution,
expanded using 2D edge elements, is obtained as

�� � � � �_ a Q
� D = � � � � n � �� �

whereo q is number of unknowns for the 2D
eigenvalue problem and is equal to the number of edges on the
port triangulation.

c � � � is the eigenvector of the dominant
mode. For the 2D modal distribution, we use the center
frequency in the band of interest with the assumption that
the modal distribution of the TEM mode remains unchanged
within the band. This assumption is true for coaxial lines and
stripline feed structures [8]. The temporal discretization of (10)
is performed using the

 �
method as discussed in [1].

Using the orthogonality property of the modes, we obtain the
reflection coefficient from (5) as� 	 & 
 � er 	 � � 	 6 
 
 r u E P Q �� 	 6 
 J �� � � � L T v � e (11)

where
r 	 2 	 6 
 


is the Fourier transform of2 	 6 

.

3. NUMERICAL EXAMPLES

The 3D hybrid FE/FDTD code was implemented in C++
using object-oriented programming features. The FETD update
matrices are stored in compressed column storage format for
sparse matrices. For efficient implicit update of the FETD
unknowns, complete Cholesky factorization of the matrix is
performed once before the time marching begins. To reduce
the number of non-zero entries in the Cholesky Factor, matrix
reordering is applied [9]. Anisotropic PML is used in the
FDTD region. In all examples, the maximum edge length in
the finite element region is 1.5# % .

A. w /4 Monopole

The first example is a 15mmw /4 monopole located above a
finite ground plane. The inner conductor of the coaxial line
extends out as the monopole arm. The radii of inner and
outer conductors of the coaxial line are 1.3mm and 3mm
respectively. The geometry is shown in Fig. 3(a) and the PEC
faces of finite element mesh used is shown in Fig. 3(b).# %
is set as 2mm. The input impedance of this antenna using the
hybrid code is compared to the results obtained using HFSSR

&
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(a) Geometry (b) PEC Faces

Fig. 3: Modeling of � /4 monopole on a finite ground plane.
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Fig. 4: Reflection Coefficient of Monopole antenna indicating the resonant
frequency.

Fig. 5: Modeling of Coaxial line fed Square patch antenna.

with infinite ground plane, as shown in Fig. 4. The results are
in good agreement, with both predicting resonance at about
5GHz.

B. Coax-fed Square Patch Antenna

The second example is a patch antenna. This is the unit
radiating element in a JINA 2004 Test Case [10]. The 16.2mm
x 16.2mm square patch is embedded in a 19.6mm x 19.6mm
substrate with

�
�

�
�

�
� and thickness 2.34mm, as shown in

Fig. 5. The element is inserted in a perfectly conducting cavity.
� � is set as 1mm. Reflection coefficient obtained using the
hybrid code is shown in Fig. 6, where excellent agreement is
achieved with results from a frequency domain FEM code.
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Fig. 6: Reflection Coefficient of Patch Antenna indicating the resonant
frequency

4. CONCLUSION

The 3D Hybrid FE/FDTD method retains the inherent ad-
vantage of FETD in modeling arbitrarily shaped structures
along with the efficiency of FDTD in modeling simple shapes
and PML. Antenna feed with TEM excitation is incorporated
in the FETD formulation to obtain the reflection coefficient
and hence, input impedance. Initial results obtained using the
method are promising and demonstrate its potential application
to the design and analysis of broadband and ultrawideband
antennas.
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