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Abstract

This paper presents an alternative implementation of
the three-dimensional (3-D) alternating direction implicit
finite-difference time-domain (ADI-FDTD) method. The
method has fewer for-loops than the conventional ADI-
FDTD method. Furthermore, it involves the same total
flops count like conventional ADI-FDTD, which is less
than both Crank-Nicolson direct-splitting (CNDS) and
Crank-Nicolson-cycle sweep-uniform (CNCSU) methods.
The formulation of the present method with fewer for-
loops is described and detailed comparison among various
methods in flops and loops count is discussed.

1. Introduction

There has been considerable interest in the numerical
solutions of electromagnetic wave problems based on
finite-difference time-domain (FDTD) methods [1]. One
of the celebrated FDTD method is that developed by Yee
[2], which is an explicit but conditionally stable scheme
with time-step size constrained by Courant-Friedrich-
Levy (CFL) condition. To remove the CFL constraint,
the unconditionally stable FDTD method based on the
alternating direction implicit (ADI) technique has been
developed [3], [4]. This method has been demonstrated
to be useful for problems with very fine meshes rel-
ative to wavelength. Recently, alternative uncondition-
ally stable methods have been devised especially those
based on Crank-Nicolson (CN) schemes [5]. In particular,
the Crank-Nicolson direct-splitting (CNDS) and Crank-
Nicolson-cycle sweep-uniform (CNCSU) methods have
been developed and investigated. The former method has
the same numerical dispersion as ADI-FDTD while the
latter method can have smaller anisotropy.

Apart from different numerical accuracy or anisotropy,
the computation efficiency of ADI and CN methods is
also different. Often the count of floating-point operations
(flops) is used to describe their computation costs (and
hence efficiency). In addition, one should also consider
the for-loop overheads incurred in most programming
languages [5]. A for-loop, especially that of a nested one,
consumes some CPU time and has been used occasionally
as a simple delay in some programming instances. It
has been found that both CNDS and CNCSU methods
have fewer for-loops than ADI-FDTD even though they
require more flops count. For maximum efficiency, it will be
desirable to have as few loops as possible in implementing

a FDTD method, and preferably not at the expense of
more arithmetic operations.

In this paper, an alternative implementation of ADI-
FDTD method is presented. The method has fewer for-
loops than the conventional ADI-FDTD method of [3],
[4]. Furthermore, it involves the same total flops count
like conventional ADI-FDTD, which is less than both
CNDS and CNCSU methods. Section II describes the
formulation of the present method with fewer for-loops,
while Section III provides a detailed comparison among
various methods in flops and loops count. For generality
and completeness, we shall consider the method for three-
dimensional (3-D) case in the following.

2. Formulation
The conventional ADI-FDTD method involves two up-
dating procedures for advancement of time steps from n
to n + 1

2 and from n + 1
2 to n + 1. Each procedure may

consist of implicit updating of electric (magnetic) field
components and explicit updating of magnetic (electric)
field components. For instance, the implicit updating
equations for Ex read
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while the explicit updating equations for Hx are
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where

a1 =
∆t

2ε
, a2 =

∆t

2µ
. (5)

The updating equations for other field components may
be referred to [1], [3], [4]. There are altogether 12 for-loops
needed to perform the sweep along x, y and z-directions
for all implicit and explicit updating equations in both
procedures. To reduce the for-loops, some of the explicit
updating equations may be omitted.

Consider the right-hand side of (2), there are magnetic
field components Hy and Hz evaluated at time step n+ 1

2 .
These field components may be eliminated by substituting
their explicit updating equations for
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and correspondingly for Hy|n+ 1
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. Upon
this substitution and some simplifications, the implicit
updating equation for Ex|n+1 can be obtained as
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Similar manipulations can be performed to derive the
implicit updating equations for other electric field com-
ponents Ey|n+1 and Ez|n+1.

Although (8) does not involve magnetic field compo-
nents at n+ 1

2
, it still contains many more terms that call

for substantial arithmetic operations. To reduce the terms,
we recognize that some of them appear concurrently in
the right-hand sides of both (1) and (8). By keeping these
terms to avoid recalculations, we arrive at the implicit
updating equations for Ex as
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Note that (9) should be incorporated within the loop of
(10) to avoid introducing additional loops. In the similar
manner, other implicit updating equations can be derived
for Ey as
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and for Ez as

ez|ni,j,k+1
2

=
a1

∆x

(
Hy|ni+ 1

2 ,j,k+1
2
− Hy|ni−1

2 ,j,k+1
2

)

− a1

∆y

(
Hx|ni,j+1

2 ,k+ 1
2
− Hx|ni,j−1

2 ,k+ 1
2

)

− a1a2

∆x∆z

(
Ex|ni+ 1

2 ,j,k+1 − Ex|ni+ 1
2 ,j,k

− Ex|ni− 1
2 ,j,k+1 + Ex|ni−1

2 ,j,k

)
(15)

− a1a2

∆x2
Ez|n+ 1

2
i−1,j,k+1

2
+

(
1 +

2a1a2

∆x2

)
Ez|n+1

2
i,j,k+1

2

− a1a2

∆x2
Ez|n+1

2
i+1,j,k+1

2
= Ez|ni,j,k+1

2
+ ez|ni,j,k+1

2
(16)

− a1a2

∆y2
Ez|n+1

i,j−1,k+1
2

+
(
1 +

2a1a2

∆y2

)
Ez|n+1

i,j,k+1
2

− a1a2

∆y2
Ez|n+1

i,j+1,k+1
2

=
(
1 − 2a1a2

∆x2

)
Ez|n+1

2
i,j,k+1

2

+
a1a2

∆x2

(
Ez|n+1

2
i+1,j,k+1

2
+ Ez|n+ 1

2
i−1,j,k+1

2

)

− 2a1a2

∆y∆z

(
Ey|n+ 1

2
i,j+1

2 ,k+1
− Ey|n+ 1

2
i,j+1

2 ,k

− Ey|n+ 1
2

i,j−1
2 ,k+1

+ Ey|n+1
2

i,j−1
2 ,k

)

+
a1a2

∆y2

(
Ez|ni,j+1,k+1

2
− Ez|ni,j,k+1

2

− Ez|ni,j,k+1
2

+ Ez|ni,j−1,k+1
2

)

+ ez |ni,j,k+1
2
. (17)

For the magnetic field components, their explicit up-
dating equations are
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Table 1: Flops and Loops Count for FDTD Methods

FDTD Method (9)-(20) ADI CNDS CNCSU

Implicit
M/D 21 18 21 30
A/S 57 48 63 96

Explicit
M/D 6 12 6 6
A/S 18 24 24 24

Total
M/D 27 30 27 36
A/S 75 72 87 110

Loops 9 12 9+1 9+1
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Note that there is no more explicit updating equation
required at half time step like (3), (6) or (7). Equations
(9)-(20) constitute the ADI-FDTD method with nine
for-loops, which are fewer than those required in the
conventional method [3], [4].

3. Discussion and Comparison

To provide more detailed assessment of the method above,
let us acquire the flops count taking into account the
number of multiplications/divisions (M/D) and addi-
tions/subtractions (A/S) required for one complete time
step. Table 1 lists the flops count for the present and
conventional methods [3], [4], based on the right-hand sides
of their respective updating equations, cf. (9)-(20) and (1)-
(4) etc. For simplicity, the number of electric and magnetic
field components in all directions have been taken to be the
same. It is also assumed that all multiplicative factors have
been precomputed and stored. From the table, it is clear
that the present method does not cost more total flops
count despite having fewer for-loops than the conventional
method. Also listed in the table are the flops and loops
requirements for CNDS and CNCSU methods [5]. Both
methods also have fewer for-loops but require more flops
than conventional ADI-FDTD.

In addition, according to [5], one extra loop is needed to
store the field components at time step n. In the present
method, the array pointers to the field components at time
step n and n + 1 are alternated and indexed according to
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whether n is odd or even. For instance, the code for such
indexing may take the form

n0 = 2 − mod(n, 2) (21)
n1 = 2 − mod(n + 1, 2). (22)

Then subsequent field array variables, say E(n0) and
E(n1), will refer to E|n and E|n+1 respectively. This
circumvents the need to transfer the field values and saves
the extra loop cost. It should be noted that although the
present method has fewer loops than conventional ADI
and other CN methods while involving the same or fewer
flops, such advantage should not be over-emphasized [5].
There are other computation costs including the solutions
of tridiagonal systems for implicit schemes as well as
memory indexing and access, etc., which often depend
on the actual code arrangement and the level of compiler
optimization. Reducing all these costs especially during
run-time remains a challenging topic to be investigated
further.

4. Conclusion
This paper has presented an alternative implementation
of the 3-D ADI-FDTD method. The method has fewer
for-loops than the conventional ADI-FDTD method. Fur-
thermore, it involves the same total flops count like
conventional ADI-FDTD, which is less than both CNDS
and CNCSU methods. The formulation of the present
method with fewer for-loops has been described and
detailed comparison among various methods in flops and
loops count has been discussed. Apart from for-loops,
other aspects of implementation should also be enhanced
whenever possible in order to improve the overall perfor-
mance of the ADI-FDTD method.
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